Skip to content
Snippets Groups Projects
rsa-keygen.c 8.27 KiB
Newer Older
  • Learn to ignore specific revisions
  • Niels Möller's avatar
    Niels Möller committed
    /* rsa-keygen.c
     *
     * Generation of RSA keypairs
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2002 Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
     * The nettle library is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    #if HAVE_CONFIG_H
    #include "config.h"
    #endif
    
    #if HAVE_LIBGMP
    
    #include "rsa.h"
    #include "bignum.h"
    
    #include <assert.h>
    #include <limits.h>
    #include <stdlib.h>
    
    #ifndef DEBUG
    # define DEBUG 0
    #endif
    
    #if DEBUG
    # include <stdio.h>
    #endif
    
    /* Returns a random number, 0 <= x < 2^bits. */
    static void
    bignum_random_size(mpz_t x, unsigned bits,
    		   void *random_ctx, nettle_random_func random)
    {
      unsigned length = (bits + 7) / 8;
      uint8_t *data = alloca(length);
    
      random(random_ctx, length, data);
    
      nettle_mpz_set_str_256(x, length, data);
    
      if (bits % 8)
        mpz_fdiv_r_2exp(x, x, bits);
    }
    
    #define NUMBER_OF_PRIMES 167
    
    static const unsigned long primes[NUMBER_OF_PRIMES] = {
      3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
      71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
      149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
      223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
      283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367,
      373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
      449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
      541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613,
      617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
      701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787,
      797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
      881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971,
      977, 983, 991, 997
    };
    
    /* NOTE: The mpz_nextprime in current GMP is unoptimized. */
    static void
    bignum_next_prime(mpz_t p, mpz_t n, int count,
    		  void *progress_ctx, nettle_progress_func progress)
    {
      mpz_t tmp;
      unsigned long *moduli = NULL;
      unsigned long difference;
      int prime_limit = NUMBER_OF_PRIMES;
    
      /* First handle tiny numbers */
      if (mpz_cmp_ui(n, 2) <= 0)
        {
          mpz_set_ui(p, 2);
          return;
        }
      mpz_set(p, n);
      mpz_setbit(p, 0);
    
      if (mpz_cmp_ui(p, 8) < 0)
        return;
    
      mpz_init(tmp);
    
      if (prime_limit && (mpz_cmp_ui(p, primes[prime_limit]) <= 0) )
        /* Use unly 3, 5 and 7 */
        prime_limit = 3;
    
      if (prime_limit)
        {
          /* Compute residues modulo small odd primes */
          int i;
    
          moduli = alloca(prime_limit * sizeof(*moduli));
          for (i = 0; i < prime_limit; i++)
    	moduli[i] = mpz_fdiv_ui(p, primes[i]);
        }
    
      for (difference = 0; ; difference += 2)
        {
          if (difference >= ULONG_MAX - 10)
    	{ /* Should not happen, at least not very often... */
    	  mpz_add_ui(p, p, difference);
    	  difference = 0;
    	}
    
          /* First check residues */
          if (prime_limit)
    	{
    	  int composite = 0;
          	  int i;
    
    	  for (i = 0; i < prime_limit; i++)
    	    {
    	      if (moduli[i] == 0)
    		composite = 1;
    	      moduli[i] = (moduli[i] + 2) % primes[i];
    	    }
    	  if (composite)
    	    continue;
    	}
          
          mpz_add_ui(p, p, difference);
          difference = 0;
    
          if (progress)
    	progress(progress_ctx, '.');
          
          /* Fermat test, with respect to 2 */
          mpz_set_ui(tmp, 2);
          mpz_powm(tmp, tmp, p, p);
          if (mpz_cmp_ui(tmp, 2) != 0)
    	continue;
    
          if (progress)
    	progress(progress_ctx, '+');
    
          /* Miller-Rabin test */
          if (mpz_probab_prime_p(p, count))
    	break;
        }
      mpz_clear(tmp);
    }
    
    /* Returns a random prime of size BITS */
    static void
    bignum_random_prime(mpz_t x, unsigned bits,
    		    void *random_ctx, nettle_random_func random,
    		    void *progress_ctx, nettle_progress_func progress)
    {
      assert(bits);
      
      for (;;)
        {
          bignum_random_size(x, bits, random_ctx, random);
          mpz_setbit(x, bits - 1);
    
          /* Miller-rabin count of 25 is probably much overkill. */
          bignum_next_prime(x, x, 25, progress_ctx, progress);
    
          if (mpz_sizeinbase(x, 2) == bits)
    	break;
        }
    }
    
    int
    rsa_generate_keypair(struct rsa_public_key *pub,
    		     struct rsa_private_key *key,
    		     void *random_ctx, nettle_random_func random,
    		     void *progress_ctx, nettle_progress_func progress,
    		     unsigned n_size,
    		     unsigned e_size)
    {
      mpz_t p1;
      mpz_t q1;
      mpz_t phi;
      mpz_t tmp;
    
      if (e_size)
        {
          /* We should choose e randomly. Is the size reasonable? */
          if ((e_size < 16) || (e_size > n_size) )
    	return 0;
        }
      else
        {
          /* We have a fixed e. Check that it makes sense */
    
          /* It must be odd */
          if (!mpz_tstbit(pub->e, 0))
    	return 0;
    
          /* And 3 or larger */
          if (mpz_cmp_ui(pub->e, 3) < 0)
    	return 0;
        }
      
      if (n_size < RSA_MINIMUM_N_BITS)
        return 0;
      
      mpz_init(p1); mpz_init(q1); mpz_init(phi); mpz_init(tmp);
    
      /* Generate primes */
      for (;;)
        {
          /* Generate p, such that gcd(p-1, e) = 1 */
          for (;;)
    	{
    	  bignum_random_prime(key->p, (n_size+1)/2,
    			      random_ctx, random,
    			      progress_ctx, progress);
    	  mpz_sub_ui(p1, key->p, 1);
          
    	  /* If e was given, we must chose p such that p-1 has no factors in
    	   * common with e. */
    	  if (e_size)
    	    break;
    	  
    	  mpz_gcd(tmp, pub->e, p1);
    
    	  if (mpz_cmp_ui(tmp, 1) == 0)
    	    break;
    	  else if (progress) progress(progress_ctx, 'c');
    	} 
    
          if (progress)
    	progress(progress_ctx, '\n');
          
          /* Generate q, such that gcd(q-1, e) = 1 */
          for (;;)
    	{
    	  bignum_random_prime(key->q, n_size/2,
    			      random_ctx, random,
    			      progress_ctx, progress);
    	  mpz_sub_ui(q1, key->q, 1);
          
    	  /* If e was given, we must chose q such that q-1 has no factors in
    	   * common with e. */
    	  if (e_size)
    	    break;
    	  
    	  mpz_gcd(tmp, pub->e, q1);
    
    	  if (mpz_cmp_ui(tmp, 1) == 0)
    	    break;
    	  else if (progress) progress(progress_ctx, 'c');
    	}
    
          /* Now we have the primes. Is the product of the right size? */
          mpz_mul(pub->n, key->p, key->q);
          
          if (mpz_sizeinbase(pub->n, 2) != n_size)
    	/* We might get an n of size n_size-1. Then just try again. */
    	{
    #if DEBUG
    	  fprintf(stderr,
    		  "\nWanted size: %d, p-size: %d, q-size: %d, n-size: %d\n",
    		  n_size,
    		  mpz_sizeinbase(key->p,2),
    		  mpz_sizeinbase(key->q,2),
    		  mpz_sizeinbase(pub->n,2));
    #endif
    	  if (progress)
    	    {
    	      progress(progress_ctx, 'b');
    	      progress(progress_ctx, '\n');
    	    }
    	  continue;
    	}
          
          if (progress)
    	progress(progress_ctx, '\n');
    
          /* c = q^{-1} (mod p) */
          if (mpz_invert(key->c, key->q, key->p))
    	/* This should succeed everytime. But if it doesn't,
    	 * we try again. */
    	break;
          else if (progress) progress(progress_ctx, '?');
        }
    
      mpz_mul(phi, p1, q1);
      
      /* If we didn't have a given e, generate one now. */
      if (e_size)
        for (;;)
          {
    	bignum_random_size(pub->e, e_size,
    			   random_ctx, random);
    	
    	/* Make sure it's odd and that the most significant bit is
    	 * set */
    	mpz_setbit(pub->e, 0);
    	mpz_setbit(pub->e, e_size - 1);
    
    	/* Needs gmp-3, or inverse might be negative. */
    	if (mpz_invert(key->d, pub->e, phi))
    	  break;
    	else if (progress) progress(progress_ctx, 'e');
          }
      else
        {
          /* Must always succeed, as we already that e
           * doesn't have any common factor with p-1 or q-1. */
          int res = mpz_invert(key->d, pub->e, phi);
          assert(res);
        }
    
      /* Done! Almost, we must compute the auxillary private values. */
      /* a = d % (p-1) */
      mpz_fdiv_r(key->a, key->d, p1);
    
      /* b = d % (q-1) */
      mpz_fdiv_r(key->b, key->d, q1);
    
      /* c was computed earlier */
    
      pub->size = key->size = (mpz_sizeinbase(pub->n, 2) + 7) / 8;
      assert(pub->size >= RSA_MINIMUM_N_OCTETS);
      
      mpz_clear(p1); mpz_clear(q1); mpz_clear(phi); mpz_clear(tmp);
    
      return 1;
    }
    
    #endif /* HAVE_LIBGMP */