Skip to content
Snippets Groups Projects
cast128.c 7.83 KiB
Newer Older
  • Learn to ignore specific revisions
  • Niels Möller's avatar
    Niels Möller committed
    /* cast128.c
     *
    
     * The CAST-128 block cipher, described in RFC 2144.
    
    Niels Möller's avatar
    Niels Möller committed
     */
    
    /*	CAST-128 in C
     *	Written by Steve Reid <sreid@sea-to-sky.net>
     *	100% Public Domain - no warranty
     *	Released 1997.10.11
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2001 Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
     * The nettle library is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
    
    Niels Möller's avatar
    Niels Möller committed
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
    
    Niels Möller's avatar
    Niels Möller committed
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    #include "cast128.h"
    #include "cast128_sboxes.h"
    
    #include "macros.h"
    
    #include <assert.h>
    
    #define CAST_SMALL_KEY 10
    #define CAST_SMALL_ROUNDS 12
    #define CAST_FULL_ROUNDS 16
    
    /* Macros to access 8-bit bytes out of a 32-bit word */
    #define U8a(x) ( (uint8_t) (x>>24) )
    #define U8b(x) ( (uint8_t) ((x>>16)&0xff) )
    #define U8c(x) ( (uint8_t) ((x>>8)&0xff) )
    #define U8d(x) ( (uint8_t) ((x)&0xff) )
    
    /* Circular left shift */
    #define ROL(x, n) ( ((x)<<(n)) | ((x)>>(32-(n))) )
    
    /* CAST-128 uses three different round functions */
    #define F1(l, r, i) \
    	t = ROL(ctx->keys[i] + r, ctx->keys[i+16]); \
    	l ^= ((cast_sbox1[U8a(t)] ^ cast_sbox2[U8b(t)]) \
    	 - cast_sbox3[U8c(t)]) + cast_sbox4[U8d(t)];
    #define F2(l, r, i) \
    	t = ROL(ctx->keys[i] ^ r, ctx->keys[i+16]); \
    	l ^= ((cast_sbox1[U8a(t)] - cast_sbox2[U8b(t)]) \
    	 + cast_sbox3[U8c(t)]) ^ cast_sbox4[U8d(t)];
    #define F3(l, r, i) \
    	t = ROL(ctx->keys[i] - r, ctx->keys[i+16]); \
    	l ^= ((cast_sbox1[U8a(t)] + cast_sbox2[U8b(t)]) \
    	 ^ cast_sbox3[U8c(t)]) - cast_sbox4[U8d(t)];
    
    
    /***** Encryption Function *****/
    
    void
    cast128_encrypt(struct cast128_ctx *ctx,
    		unsigned length, uint8_t *dst,
    		const uint8_t *src)
    {
      FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
        {
          uint32_t t, l, r;
    
          /* Get inblock into l,r */
          l = READ_UINT32(src);
          r = READ_UINT32(src+4);
    
          /* Do the work */
          F1(l, r,  0);
          F2(r, l,  1);
          F3(l, r,  2);
          F1(r, l,  3);
          F2(l, r,  4);
          F3(r, l,  5);
          F1(l, r,  6);
          F2(r, l,  7);
          F3(l, r,  8);
          F1(r, l,  9);
          F2(l, r, 10);
          F3(r, l, 11);
          /* Only do full 16 rounds if key length > 80 bits */
          if (ctx->rounds > 12) {
    	F1(l, r, 12);
    	F2(r, l, 13);
    	F3(l, r, 14);
    	F1(r, l, 15);
          }
          /* Put l,r into outblock */
          WRITE_UINT32(dst, r);
          WRITE_UINT32(dst + 4, l);
          /* Wipe clean */
          t = l = r = 0;
        }
    }
    
    
    /***** Decryption Function *****/
    
    void
    cast128_decrypt(struct cast128_ctx *ctx,
    		unsigned length, uint8_t *dst,
    		const uint8_t *src)
    {
      FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
        {
          uint32_t t, l, r;
    
          /* Get inblock into l,r */
          r = READ_UINT32(src);
          l = READ_UINT32(src+4);
    
          /* Do the work */
          /* Only do full 16 rounds if key length > 80 bits */
          if (ctx->rounds > 12) {
    	F1(r, l, 15);
    	F3(l, r, 14);
    	F2(r, l, 13);
    	F1(l, r, 12);
          }
          F3(r, l, 11);
          F2(l, r, 10);
          F1(r, l,  9);
          F3(l, r,  8);
          F2(r, l,  7);
          F1(l, r,  6);
          F3(r, l,  5);
          F2(l, r,  4);
          F1(r, l,  3);
          F3(l, r,  2);
          F2(r, l,  1);
          F1(l, r,  0);
    
          /* Put l,r into outblock */
          WRITE_UINT32(dst, l);
          WRITE_UINT32(dst + 4, r);
    
          /* Wipe clean */
          t = l = r = 0;
        }
    }
    
    /***** Key Schedule *****/
    
    void
    cast128_set_key(struct cast128_ctx *ctx,
    		unsigned keybytes, const uint8_t *rawkey)
    {
      uint32_t t[4], z[4], x[4];
      unsigned i;
    
      /* Set number of rounds to 12 or 16, depending on key length */
      ctx->rounds = (keybytes <= CAST_SMALL_KEY)
        ? CAST_SMALL_ROUNDS : CAST_FULL_ROUNDS;
    
      /* Copy key to workspace x */
      for (i = 0; i < 4; i++) {
        x[i] = 0;
        if ((i*4+0) < keybytes) x[i] = (uint32_t)rawkey[i*4+0] << 24;
        if ((i*4+1) < keybytes) x[i] |= (uint32_t)rawkey[i*4+1] << 16;
        if ((i*4+2) < keybytes) x[i] |= (uint32_t)rawkey[i*4+2] << 8;
        if ((i*4+3) < keybytes) x[i] |= (uint32_t)rawkey[i*4+3];
      }
      /* Generate 32 subkeys, four at a time */
      for (i = 0; i < 32; i+=4) {
        switch (i & 4) {
        case 0:
          t[0] = z[0] = x[0] ^ cast_sbox5[U8b(x[3])]
    	^ cast_sbox6[U8d(x[3])] ^ cast_sbox7[U8a(x[3])]
    	^ cast_sbox8[U8c(x[3])] ^ cast_sbox7[U8a(x[2])];
          t[1] = z[1] = x[2] ^ cast_sbox5[U8a(z[0])]
    	^ cast_sbox6[U8c(z[0])] ^ cast_sbox7[U8b(z[0])]
    	^ cast_sbox8[U8d(z[0])] ^ cast_sbox8[U8c(x[2])];
          t[2] = z[2] = x[3] ^ cast_sbox5[U8d(z[1])]
    	^ cast_sbox6[U8c(z[1])] ^ cast_sbox7[U8b(z[1])]
    	^ cast_sbox8[U8a(z[1])] ^ cast_sbox5[U8b(x[2])];
          t[3] = z[3] = x[1] ^ cast_sbox5[U8c(z[2])] ^
    	cast_sbox6[U8b(z[2])] ^ cast_sbox7[U8d(z[2])]
    	^ cast_sbox8[U8a(z[2])] ^ cast_sbox6[U8d(x[2])];
          break;
        case 4:
          t[0] = x[0] = z[2] ^ cast_sbox5[U8b(z[1])]
    	^ cast_sbox6[U8d(z[1])] ^ cast_sbox7[U8a(z[1])]
    	^ cast_sbox8[U8c(z[1])] ^ cast_sbox7[U8a(z[0])];
          t[1] = x[1] = z[0] ^ cast_sbox5[U8a(x[0])]
    	^ cast_sbox6[U8c(x[0])] ^ cast_sbox7[U8b(x[0])]
    	^ cast_sbox8[U8d(x[0])] ^ cast_sbox8[U8c(z[0])];
          t[2] = x[2] = z[1] ^ cast_sbox5[U8d(x[1])]
    	^ cast_sbox6[U8c(x[1])] ^ cast_sbox7[U8b(x[1])]
    	^ cast_sbox8[U8a(x[1])] ^ cast_sbox5[U8b(z[0])];
          t[3] = x[3] = z[3] ^ cast_sbox5[U8c(x[2])]
    	^ cast_sbox6[U8b(x[2])] ^ cast_sbox7[U8d(x[2])]
    	^ cast_sbox8[U8a(x[2])] ^ cast_sbox6[U8d(z[0])];
          break;
        }
        switch (i & 12) {
        case 0:
        case 12:
          ctx->keys[i+0] = cast_sbox5[U8a(t[2])] ^ cast_sbox6[U8b(t[2])]
    	^ cast_sbox7[U8d(t[1])] ^ cast_sbox8[U8c(t[1])];
          ctx->keys[i+1] = cast_sbox5[U8c(t[2])] ^ cast_sbox6[U8d(t[2])]
    	^ cast_sbox7[U8b(t[1])] ^ cast_sbox8[U8a(t[1])];
          ctx->keys[i+2] = cast_sbox5[U8a(t[3])] ^ cast_sbox6[U8b(t[3])]
    	^ cast_sbox7[U8d(t[0])] ^ cast_sbox8[U8c(t[0])];
          ctx->keys[i+3] = cast_sbox5[U8c(t[3])] ^ cast_sbox6[U8d(t[3])]
    	^ cast_sbox7[U8b(t[0])] ^ cast_sbox8[U8a(t[0])];
          break;
        case 4:
        case 8:
          ctx->keys[i+0] = cast_sbox5[U8d(t[0])] ^ cast_sbox6[U8c(t[0])]
    	^ cast_sbox7[U8a(t[3])] ^ cast_sbox8[U8b(t[3])];
          ctx->keys[i+1] = cast_sbox5[U8b(t[0])] ^ cast_sbox6[U8a(t[0])]
    	^ cast_sbox7[U8c(t[3])] ^ cast_sbox8[U8d(t[3])];
          ctx->keys[i+2] = cast_sbox5[U8d(t[1])] ^ cast_sbox6[U8c(t[1])]
    	^ cast_sbox7[U8a(t[2])] ^ cast_sbox8[U8b(t[2])];
          ctx->keys[i+3] = cast_sbox5[U8b(t[1])] ^ cast_sbox6[U8a(t[1])]
    	^ cast_sbox7[U8c(t[2])] ^ cast_sbox8[U8d(t[2])];
          break;
        }
        switch (i & 12) {
        case 0:
          ctx->keys[i+0] ^= cast_sbox5[U8c(z[0])];
          ctx->keys[i+1] ^= cast_sbox6[U8c(z[1])];
          ctx->keys[i+2] ^= cast_sbox7[U8b(z[2])];
          ctx->keys[i+3] ^= cast_sbox8[U8a(z[3])];
          break;
        case 4:
          ctx->keys[i+0] ^= cast_sbox5[U8a(x[2])];
          ctx->keys[i+1] ^= cast_sbox6[U8b(x[3])];
          ctx->keys[i+2] ^= cast_sbox7[U8d(x[0])];
          ctx->keys[i+3] ^= cast_sbox8[U8d(x[1])];
          break;
        case 8:
          ctx->keys[i+0] ^= cast_sbox5[U8b(z[2])];
          ctx->keys[i+1] ^= cast_sbox6[U8a(z[3])];
          ctx->keys[i+2] ^= cast_sbox7[U8c(z[0])];
          ctx->keys[i+3] ^= cast_sbox8[U8c(z[1])];
          break;
        case 12:
          ctx->keys[i+0] ^= cast_sbox5[U8d(x[0])];
          ctx->keys[i+1] ^= cast_sbox6[U8d(x[1])];
          ctx->keys[i+2] ^= cast_sbox7[U8a(x[2])];
          ctx->keys[i+3] ^= cast_sbox8[U8b(x[3])];
          break;
        }
        if (i >= 16) {
          ctx->keys[i+0] &= 31;
          ctx->keys[i+1] &= 31;
          ctx->keys[i+2] &= 31;
          ctx->keys[i+3] &= 31;
        }
      }
      /* Wipe clean */
      for (i = 0; i < 4; i++) {
        t[i] = x[i] = z[i] = 0;
      }
    }