Newer
Older
/* desCode.h
*
* $Id$ */
/* des - fast & portable DES encryption & decryption.
* Please see the file `descore.README' for the complete copyright notice.
extern const uint32_t des_keymap[];
extern const uint32_t des_bigmap[];
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/* optional customization:
* the idea here is to alter the code so it will still run correctly
* on any machine, but the quickest on the specific machine in mind.
* note that these silly tweaks can give you a 15%-20% speed improvement
* on the sparc -- it's probably even more significant on the 68000. */
/* take care of machines with incredibly few registers */
#if defined(i386)
#define REGISTER /* only x, y, z will be declared register */
#else
#define REGISTER register
#endif /* i386 */
/* is auto inc/dec faster than 7bit unsigned indexing? */
#if defined(vax) || defined(mc68000)
#define FIXR r += 32;
#define FIXS s += 8;
#define PREV(v,o) *--v
#define NEXT(v,o) *v++
#else
#define FIXR
#define FIXS
#define PREV(v,o) v[o]
#define NEXT(v,o) v[o]
#endif
/* if no machine type, default is indexing, 6 registers and cheap literals */
#if !defined(i386) && !defined(vax) && !defined(mc68000) && !defined(sparc)
#define vax
#endif
/* handle a compiler which can't reallocate registers */
/* The BYTE type is used as parameter for the encrypt/decrypt functions.
* It's pretty bad to have the function prototypes depend on
* a macro definition that the users of the function doesn't
#endif
/* handle constants in the optimal way for 386 & vax */
/* 386: we declare 3 register variables (see above) and use 3 more variables;
* vax: we use 6 variables, all declared register;
* we assume address literals are cheap & unrestricted;
* we assume immediate constants are cheap & unrestricted. */
#if defined(i386) || defined(vax)
#define MQ0 des_bigmap
#define MQ1 (des_bigmap + 64)
#define MQ2 (des_bigmap + 128)
#define MQ3 (des_bigmap + 192)
#define HQ0(z) /* z |= 0x01000000L; */
#define HQ2(z) /* z |= 0x03000200L; */
#define LQ0(z) 0xFCFC & z
#define LQ1(z) 0xFCFC & z
#define LQ2(z) 0xFCFC & z
#define LQ3(z) 0xFCFC & z
#define SQ 16
#define MS0 des_keymap
#define MS1 (des_keymap + 64)
#define MS2 (des_keymap + 128)
#define MS3 (des_keymap + 192)
#define MS4 (des_keymap + 256)
#define MS5 (des_keymap + 320)
#define MS6 (des_keymap + 384)
#define MS7 (des_keymap + 448)
#define HS(z)
#define LS0(z) 0xFC & z
#define LS1(z) 0xFC & z
#define LS2(z) 0xFC & z
#define LS3(z) 0xFC & z
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#define REGQUICK
#define SETQUICK
#define REGSMALL
#define SETSMALL
#endif /* defined(i386) || defined(vax) */
/* handle constants in the optimal way for mc68000 */
/* in addition to the core 6 variables, we declare 3 registers holding constants
* and 4 registers holding address literals.
* at most 6 data values and 5 address values are actively used at once.
* we assume address literals are so expensive we never use them;
* we assume constant index offsets > 127 are expensive, so they are not used.
* we assume all constants are expensive and put them in registers,
* including shift counts greater than 8. */
#if defined(mc68000)
#define MQ0 m0
#define MQ1 m1
#define MQ2 m2
#define MQ3 m3
#define HQ0(z)
#define HQ2(z)
#define LQ0(z) k0 & z
#define LQ1(z) k0 & z
#define LQ2(z) k0 & z
#define LQ3(z) k0 & z
#define SQ k1
#define MS0 m0
#define MS1 m0
#define MS2 m1
#define MS3 m1
#define MS4 m2
#define MS5 m2
#define MS6 m3
#define MS7 m3
#define HS(z) z |= k0;
#define LS0(z) k1 & z
#define LS1(z) k2 & z
#define LS2(z) k1 & z
#define LS3(z) k2 & z
#define REGQUICK \
register uint32_t k0, k1; \
register uint32_t *m0, *m1, *m2, *m3;
; k1 = 16 \
/*k2 = 28 to speed up ROL */ \
; m0 = des_bigmap \
; m1 = m0 + 64 \
; m2 = m1 + 64 \
; m3 = m2 + 64
#define REGSMALL \
register uint32_t k0, k1, k2; \
register uint32_t *m0, *m1, *m2, *m3;
; k0 = 0x01000100L \
; k1 = 0x0FC \
; k2 = 0x1FC \
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
; m0 = des_keymap \
; m1 = m0 + 128 \
; m2 = m1 + 128 \
; m3 = m2 + 128
#endif /* defined(mc68000) */
/* handle constants in the optimal way for sparc */
/* in addition to the core 6 variables, we either declare:
* 4 registers holding address literals and 1 register holding a constant, or
* 8 registers holding address literals.
* up to 14 register variables are declared (sparc has %i0-%i5, %l0-%l7).
* we assume address literals are so expensive we never use them;
* we assume any constant with >10 bits is expensive and put it in a register,
* and any other is cheap and is coded in-line. */
#if defined(sparc)
#define MQ0 m0
#define MQ1 m1
#define MQ2 m2
#define MQ3 m3
#define HQ0(z)
#define HQ2(z)
#define LQ0(z) k0 & z
#define LQ1(z) k0 & z
#define LQ2(z) k0 & z
#define LQ3(z) k0 & z
#define SQ 16
#define MS0 m0
#define MS1 m1
#define MS2 m2
#define MS3 m3
#define MS4 m4
#define MS5 m5
#define MS6 m6
#define MS7 m7
#define HS(z)
#define LS0(z) 0xFC & z
#define LS1(z) 0xFC & z
#define LS2(z) 0xFC & z
#define LS3(z) 0xFC & z
register uint32_t k0; \
register uint32_t *m0, *m1, *m2, *m3;
; m0 = des_bigmap \
; m1 = m0 + 64 \
; m2 = m1 + 64 \
; m3 = m2 + 64
#define REGSMALL \
register uint32_t *m0, *m1, *m2, *m3, *m4, *m5, *m6, *m7;
#define SETSMALL \
; m0 = des_keymap \
; m1 = m0 + 64 \
; m2 = m1 + 64 \
; m3 = m2 + 64 \
; m4 = m3 + 64 \
; m5 = m4 + 64 \
; m6 = m5 + 64 \
; m7 = m6 + 64
#endif /* defined(sparc) */
/* some basic stuff */
/* generate addresses from a base and an index */
/* FIXME: This is used only as *ADD(msi,lsi(z)) or *ADD(mqi,lqi(z)).
* Why not use plain indexing instead? /Niels */
#define ADD(b,x) (uint32_t *) ((uint8_t *)b + (x))
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/* low level rotate operations */
#define NOP(d,c,o)
#define ROL(d,c,o) d = d << c | d >> o
#define ROR(d,c,o) d = d >> c | d << o
#define ROL1(d) ROL(d, 1, 31)
#define ROR1(d) ROR(d, 1, 31)
/* elementary swap for doing IP/FP */
#define SWAP(x,y,m,b) \
z = ((x >> b) ^ y) & m; \
x ^= z << b; \
y ^= z
/* the following macros contain all the important code fragments */
/* load input data, then setup special registers holding constants */
#define TEMPQUICK(LOAD) \
REGQUICK \
LOAD() \
SETQUICK
#define TEMPSMALL(LOAD) \
REGSMALL \
LOAD() \
SETSMALL
/* load data */
#define LOADDATA(x,y) \
FIXS \
y = PREV(s, 7); y<<= 8; \
y |= PREV(s, 6); y<<= 8; \
y |= PREV(s, 5); y<<= 8; \
y |= PREV(s, 4); \
x = PREV(s, 3); x<<= 8; \
x |= PREV(s, 2); x<<= 8; \
x |= PREV(s, 1); x<<= 8; \
x |= PREV(s, 0) \
SREGFREE
/* load data without initial permutation and put into efficient position */
#define LOADCORE() \
LOADDATA(x, y); \
ROR1(x); \
ROR1(y)
/* load data, do the initial permutation and put into efficient position */
#define LOADFIPS() \
LOADDATA(y, x); \
SWAP(x, y, 0x0F0F0F0FL, 004); \
SWAP(y, x, 0x0000FFFFL, 020); \
SWAP(x, y, 0x33333333L, 002); \
SWAP(y, x, 0x00FF00FFL, 010); \
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
y ^= z; \
x ^= z; \
ROR1(y)
/* core encryption/decryption operations */
/* S box mapping and P perm */
#define KEYMAPSMALL(x,z,mq0,mq1,hq,lq0,lq1,sq,ms0,ms1,ms2,ms3,hs,ls0,ls1,ls2,ls3)\
hs(z) \
x ^= *ADD(ms3, ls3(z)); \
z>>= 8; \
x ^= *ADD(ms2, ls2(z)); \
z>>= 8; \
x ^= *ADD(ms1, ls1(z)); \
z>>= 8; \
x ^= *ADD(ms0, ls0(z))
/* alternate version: use 64k of tables */
#define KEYMAPQUICK(x,z,mq0,mq1,hq,lq0,lq1,sq,ms0,ms1,ms2,ms3,hs,ls0,ls1,ls2,ls3)\
hq(z) \
x ^= *ADD(mq0, lq0(z)); \
z>>= sq; \
x ^= *ADD(mq1, lq1(z))
/* apply 24 key bits and do the odd s boxes */
#define S7S1(x,y,z,r,m,KEYMAP,LOAD) \
z = LOAD(r, m); \
z ^= y; \
KEYMAP(x,z,MQ0,MQ1,HQ0,LQ0,LQ1,SQ,MS0,MS1,MS2,MS3,HS,LS0,LS1,LS2,LS3)
/* apply 24 key bits and do the even s boxes */
#define S6S0(x,y,z,r,m,KEYMAP,LOAD) \
z = LOAD(r, m); \
z ^= y; \
ROL(z, 4, 28); \
KEYMAP(x,z,MQ2,MQ3,HQ2,LQ2,LQ3,SQ,MS4,MS5,MS6,MS7,HS,LS0,LS1,LS2,LS3)
/* actual iterations. equivalent except for UPDATE & swapping m and n */
#define ENCR(x,y,z,r,m,n,KEYMAP) \
S7S1(x,y,z,r,m,KEYMAP,NEXT); \
S6S0(x,y,z,r,n,KEYMAP,NEXT)
#define DECR(x,y,z,r,m,n,KEYMAP) \
S6S0(x,y,z,r,m,KEYMAP,PREV); \
S7S1(x,y,z,r,n,KEYMAP,PREV)
/* write out result in correct byte order */
#define SAVEDATA(x,y) \
NEXT(DEST, 0) = x; x>>= 8; \
NEXT(DEST, 1) = x; x>>= 8; \
NEXT(DEST, 2) = x; x>>= 8; \
NEXT(DEST, 3) = x; \
NEXT(DEST, 4) = y; y>>= 8; \
NEXT(DEST, 5) = y; y>>= 8; \
NEXT(DEST, 6) = y; y>>= 8; \
NEXT(DEST, 7) = y
/* write out result */
#define SAVECORE() \
ROL1(x); \
ROL1(y); \
SAVEDATA(y, x)
/* do final permutation and write out result */
#define SAVEFIPS() \
ROL1(x); \
SWAP(x, y, 0x00FF00FFL, 010); \
SWAP(y, x, 0x33333333L, 002); \
SWAP(x, y, 0x0000FFFFL, 020); \
SWAP(y, x, 0x0F0F0F0FL, 004); \
SAVEDATA(x, y)
/* the following macros contain the encryption/decryption skeletons */
#define ENCRYPT(NAME, TEMP, LOAD, KEYMAP, SAVE) \
\
void \
REGISTER const uint32_t *r, \
REGISTER const uint8_t *s) \
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
\
/* declare temps & load data */ \
TEMP(LOAD); \
\
/* do the 16 iterations */ \
ENCR(x,y,z,r, 0, 1,KEYMAP); \
ENCR(y,x,z,r, 2, 3,KEYMAP); \
ENCR(x,y,z,r, 4, 5,KEYMAP); \
ENCR(y,x,z,r, 6, 7,KEYMAP); \
ENCR(x,y,z,r, 8, 9,KEYMAP); \
ENCR(y,x,z,r,10,11,KEYMAP); \
ENCR(x,y,z,r,12,13,KEYMAP); \
ENCR(y,x,z,r,14,15,KEYMAP); \
ENCR(x,y,z,r,16,17,KEYMAP); \
ENCR(y,x,z,r,18,19,KEYMAP); \
ENCR(x,y,z,r,20,21,KEYMAP); \
ENCR(y,x,z,r,22,23,KEYMAP); \
ENCR(x,y,z,r,24,25,KEYMAP); \
ENCR(y,x,z,r,26,27,KEYMAP); \
ENCR(x,y,z,r,28,29,KEYMAP); \
ENCR(y,x,z,r,30,31,KEYMAP); \
\
/* save result */ \
SAVE(); \
\
return; \
}
#define DECRYPT(NAME, TEMP, LOAD, KEYMAP, SAVE) \
\
void \
REGISTER const uint32_t *r, \
REGISTER const uint8_t *s) \
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
\
/* declare temps & load data */ \
TEMP(LOAD); \
\
/* do the 16 iterations */ \
FIXR \
DECR(x,y,z,r,31,30,KEYMAP); \
DECR(y,x,z,r,29,28,KEYMAP); \
DECR(x,y,z,r,27,26,KEYMAP); \
DECR(y,x,z,r,25,24,KEYMAP); \
DECR(x,y,z,r,23,22,KEYMAP); \
DECR(y,x,z,r,21,20,KEYMAP); \
DECR(x,y,z,r,19,18,KEYMAP); \
DECR(y,x,z,r,17,16,KEYMAP); \
DECR(x,y,z,r,15,14,KEYMAP); \
DECR(y,x,z,r,13,12,KEYMAP); \
DECR(x,y,z,r,11,10,KEYMAP); \
DECR(y,x,z,r, 9, 8,KEYMAP); \
DECR(x,y,z,r, 7, 6,KEYMAP); \
DECR(y,x,z,r, 5, 4,KEYMAP); \
DECR(x,y,z,r, 3, 2,KEYMAP); \
DECR(y,x,z,r, 1, 0,KEYMAP); \
\
/* save result */ \
SAVE(); \
\
return; \
}