Skip to content
Snippets Groups Projects
Select Git revision
  • 17c7e2368644a495dd9f1cf4291a1e88d9f428ee
  • master default protected
  • streebog
  • gost28147
  • master-updates
  • ed448
  • shake256
  • curve448
  • ecc-sqrt
  • gosthash94cp
  • cmac64
  • block16-refactor
  • siv-mode
  • cmac-layout
  • delete-des-compat
  • delete-rsa_blind
  • aes-struct-layout
  • release-3.4-fixes
  • struct-layout
  • attribute-deprecated
  • rename-data-symbols
  • nettle_3.5.1_release_20190627
  • nettle_3.5_release_20190626
  • nettle_3.5rc1
  • nettle_3.4.1_release_20181204
  • nettle_3.4.1rc1
  • nettle_3.4_release_20171119
  • nettle_3.4rc2
  • nettle_3.4rc1
  • nettle_3.3_release_20161001
  • nettle_3.2_release_20160128
  • nettle_3.1.1_release_20150424
  • nettle_3.1_release_20150407
  • nettle_3.1rc3
  • nettle_3.1rc2
  • nettle_3.1rc1
  • nettle_3.0_release_20140607
  • nettle_2.7.1_release_20130528
  • nettle_2.7_release_20130424
  • nettle_2.6_release_20130116
  • nettle_2.5_release_20120707
41 results

sha256.c

Blame
  • Forked from Nettle / nettle
    Source project has a limited visibility.
    docode.c 25.67 KiB
    /*\
    ||| This file a part of Pike, and is copyright by Fredrik Hubinette
    ||| Pike is distributed as GPL (General Public License)
    ||| See the files COPYING and DISCLAIMER for more information.
    \*/
    #include "global.h"
    RCSID("$Id: docode.c,v 1.35 1998/04/06 03:51:54 hubbe Exp $");
    #include "las.h"
    #include "program.h"
    #include "language.h"
    #include "pike_types.h"
    #include "stralloc.h"
    #include "interpret.h"
    #include "constants.h"
    #include "array.h"
    #include "pike_macros.h"
    #include "error.h"
    #include "memory.h"
    #include "svalue.h"
    #include "main.h"
    #include "lex.h"
    #include "builtin_functions.h"
    #include "peep.h"
    #include "docode.h"
    #include "operators.h"
    #include "object.h"
    
    INT32 current_break=-1;
    INT32 current_continue=-1;
    
    static INT32 current_switch_case;
    static INT32 current_switch_default;
    static INT32 current_switch_values_on_stack;
    static INT32 *current_switch_jumptable =0;
    
    void upd_int(int offset, INT32 tmp)
    {
      MEMCPY(new_program->program+offset, (char *)&tmp,sizeof(tmp));
    }
    
    INT32 read_int(int offset)
    {
      return EXTRACT_INT(new_program->program+offset);
    }
    
    int store_linenumbers=1;
    
    /*
     * A mechanism to remember addresses on a stack.
     */
    int comp_stackp;
    INT32 comp_stack[COMPILER_STACK_SIZE];
    
    void push_address(void)
    {
     if (comp_stackp >= COMPILER_STACK_SIZE)
     {
       yyerror("Compiler stack overflow");
       comp_stackp++;
       return;
     }
     comp_stack[comp_stackp++] = PC;
    }
    
    void push_explicit(INT32 address)
    {
      if (comp_stackp >= COMPILER_STACK_SIZE)
      {
        yyerror("Compiler stack overflow");
        comp_stackp++;
        return;
      }
      comp_stack[comp_stackp++] = address;
    }
    
    INT32 pop_address(void)
    {
      if (comp_stackp == 0)
         fatal("Compiler stack underflow.\n");
      if (comp_stackp > COMPILER_STACK_SIZE)
      {
        --comp_stackp;
        return 0;
      }
      return comp_stack[--comp_stackp];
    }
    
    
    static int label_no=0;
    
    int alloc_label(void) { return ++label_no; }
    
    int do_jump(int token,INT32 lbl)
    {
      if(lbl==-1) lbl=alloc_label();
      emit(token, lbl);
      return lbl;
    }
    
    static int do_docode2(node *n,int flags);
    
    #define ins_label(L) do_jump(F_LABEL, L)
    
    void do_pop(int x)
    {
      switch(x)
      {
      case 0: return;
      case 1: emit2(F_POP_VALUE); break;
      default: emit(F_POP_N_ELEMS,x); break;
      }
    }
    
    #define DO_CODE_BLOCK(X) do_pop(do_docode((X),DO_NOT_COPY | DO_POP));
    
    int do_docode(node *n,INT16 flags)
    {
      int i;
      int save_current_line=lex.current_line;
      if(!n) return 0;
      lex.current_line=n->line_number;
      i=do_docode2(n, flags);
    
      lex.current_line=save_current_line;
      return i;
    }
    
    
    static int is_efun(node *n, c_fun fun)
    {
      return n && n->token == F_CONSTANT &&
         n->u.sval.subtype == FUNCTION_BUILTIN &&
        n->u.sval.u.efun->function == fun;
    }
    
    static void code_expression(node *n, int flags, char *err)
    {
      switch(do_docode(n, flags & ~ DO_POP))
      {
      case 0: my_yyerror("Void expression for %s",err);
      case 1: return;
      case 2:
        fatal("Internal compiler error (%s), line %ld, file %s\n",
    	  err,
    	  (long)lex.current_line,
    	  lex.current_file?lex.current_file->str:"Unknown");
      }
    }
    
    void do_cond_jump(node *n, int label, int iftrue, int flags)
    {
      iftrue=!!iftrue;
      if((flags & DO_POP) && node_is_tossable(n))
      {
        int t,f;
        t=!!node_is_true(n);
        f=!!node_is_false(n);
        if(t || f)
        {
          if(t == iftrue) do_jump(F_BRANCH, label);
          return;
        }
      }
    
      switch(n->token)
      {
      case F_LAND:
      case F_LOR:
        if(iftrue == (n->token==F_LAND))
        {
          int tmp=alloc_label();
          do_cond_jump(CAR(n), tmp, !iftrue, flags | DO_POP);
          do_cond_jump(CDR(n), label, iftrue, flags);
          emit(F_LABEL,tmp);
        }else{
          do_cond_jump(CAR(n), label, iftrue, flags);
          do_cond_jump(CDR(n), label, iftrue, flags);
        }
        return;
        
      case F_APPLY:
        if(!is_efun(CAR(n), f_not)) break;
    
      case F_NOT:
        if(!(flags & DO_POP)) break;
        do_cond_jump(CDR(n), label , !iftrue, flags | DO_NOT_COPY);
        return;
      }
    
      code_expression(n, flags | DO_NOT_COPY, "condition");
      
      if(flags & DO_POP)
      {
        if(iftrue)
          do_jump(F_BRANCH_WHEN_NON_ZERO, label);
        else
          do_jump(F_BRANCH_WHEN_ZERO, label);
      }else{
        if(iftrue)
          do_jump(F_LOR, label);
        else
          do_jump(F_LAND, label);
      }
    }
    
    #define do_jump_when_zero(N,L) do_cond_jump(N,L,0,DO_POP|DO_NOT_COPY)
    #define do_jump_when_non_zero(N,L) do_cond_jump(N,L,1,DO_POP|DO_NOT_COPY)
    
    static INT32 count_cases(node *n)
    {
      INT32 ret;
      if(!n) return 0;
      switch(n->token)
      {
      case F_DO:
      case F_FOR:
      case F_FOREACH:
      case F_INC_LOOP:
      case F_DEC_LOOP:
      case F_INC_NEQ_LOOP:
      case F_DEC_NEQ_LOOP:
      case F_SWITCH:
      case '?':
        return 0;
    
      case F_CASE:
        return !!CAR(n)+!!CDR(n);
    
      default:
        ret=0;
        if(car_is_node(n)) ret += count_cases(CAR(n));
        if(cdr_is_node(n)) ret += count_cases(CDR(n));
        return ret;
      }
    }
    
    static int do_docode2(node *n,int flags)
    {
      INT32 tmp1,tmp2,tmp3;
    
      if(!n) return 0;
    
      if(flags & DO_LVALUE)
      {
        switch(n->token)
        {
          default:
    	yyerror("Illegal lvalue.");
    	emit(F_NUMBER,0);
    	emit(F_NUMBER,0);
    	return 2;
    
          case F_ARRAY_LVALUE:
          case F_LVALUE_LIST:
          case F_LOCAL:
          case F_GLOBAL:
          case F_IDENTIFIER:
          case F_INDEX:
          case F_ARROW:
          case F_ARG_LIST:
          case F_EXTERNAL:
    	break;
        }
      }
    
      switch(n->token)
      {
      case F_EXTERNAL:
        emit(F_LDA, n->u.integer.a);
        if(flags & DO_LVALUE)
        {
          emit(F_EXTERNAL_LVALUE, n->u.integer.b);
          return 2;
        }else{
          emit(F_EXTERNAL, n->u.integer.b);
          return 1;
        }
        break;
    
      case F_UNDEFINED:
        yyerror("Undefined identifier");
        emit(F_NUMBER,0);
        return 1;
    
      case F_PUSH_ARRAY:
        code_expression(CAR(n), 0, "`@");
        emit2(F_PUSH_ARRAY);
        return -0x7ffffff;
    
      case '?':
      {
        INT32 *prev_switch_jumptable = current_switch_jumptable;
        int adroppings , bdroppings;
        current_switch_jumptable=0;
    
    
        if(!CDDR(n))
        {
          tmp1=alloc_label();
          do_jump_when_zero(CAR(n), tmp1);
          DO_CODE_BLOCK(CADR(n));
          emit(F_LABEL, tmp1);
          current_switch_jumptable = prev_switch_jumptable;
          return 0;
        }
    
        if(!CADR(n))
        {
          tmp1=alloc_label();
          do_jump_when_non_zero(CAR(n), tmp1);
          DO_CODE_BLOCK(CDDR(n));
          emit(F_LABEL,tmp1);
          current_switch_jumptable = prev_switch_jumptable;
          return 0;
        }
    
        tmp1=alloc_label();
        do_jump_when_zero(CAR(n),tmp1);
    
        adroppings=do_docode(CADR(n), flags);
        tmp3=emit(F_POP_N_ELEMS,0);
    
        /* Else */
        tmp2=do_jump(F_BRANCH,-1);
        emit(F_LABEL, tmp1);
    
        bdroppings=do_docode(CDDR(n), flags);
        if(adroppings < bdroppings)
        {
          do_pop(bdroppings - adroppings);
        }
    
        if(adroppings > bdroppings)
        {
          update_arg(tmp3,adroppings-bdroppings);
          adroppings=bdroppings;
        }
    
        emit(F_LABEL, tmp2);
    
        current_switch_jumptable = prev_switch_jumptable;
        return adroppings;
      }
          
      case F_AND_EQ:
      case F_OR_EQ:
      case F_XOR_EQ:
      case F_LSH_EQ:
      case F_RSH_EQ:
      case F_ADD_EQ:
      case F_SUB_EQ:
      case F_MULT_EQ:
      case F_MOD_EQ:
      case F_DIV_EQ:
        tmp1=do_docode(CAR(n),DO_LVALUE);
    #ifdef DEBUG
        if(tmp1 != 2)
          fatal("HELP! FATAL INTERNAL COMPILER ERROR (7)\n");
    #endif
    
        if(match_types(CAR(n)->type,array_type_string) ||
           match_types(CAR(n)->type,string_type_string))
        {
          code_expression(CDR(n), 0, "assignment");
          emit2(F_LTOSVAL2);
        }else{
          emit2(F_LTOSVAL);
          code_expression(CDR(n), 0, "assignment");
        }
    
    
        switch(n->token)
        {
        case F_ADD_EQ: emit2(F_ADD); break;
        case F_AND_EQ: emit2(F_AND); break;
        case F_OR_EQ:  emit2(F_OR);  break;
        case F_XOR_EQ: emit2(F_XOR); break;
        case F_LSH_EQ: emit2(F_LSH); break;
        case F_RSH_EQ: emit2(F_RSH); break;
        case F_SUB_EQ: emit2(F_SUBTRACT); break;
        case F_MULT_EQ:emit2(F_MULTIPLY);break;
        case F_MOD_EQ: emit2(F_MOD); break;
        case F_DIV_EQ: emit2(F_DIVIDE); break;
        }
    
        if(flags & DO_POP)
        {
          emit2(F_ASSIGN_AND_POP);
          return 0;
        }else{
          emit2(F_ASSIGN);
          return 1;
        }
    
      case F_ASSIGN:
        switch(CAR(n)->token)
        {
        case F_AND:
        case F_OR:
        case F_XOR:
        case F_LSH:
        case F_RSH:
        case F_ADD:
        case F_MOD:
        case F_SUBTRACT:
        case F_DIVIDE:
        case F_MULTIPLY:
          if(node_is_eq(CDR(n),CAAR(n)))
          {
    	tmp1=do_docode(CDR(n),DO_LVALUE);
    	if(match_types(CDR(n)->type,array_type_string) ||
    	   match_types(CDR(n)->type,string_type_string))
    	{
    	  code_expression(CDAR(n), 0, "binary operand");
    	  emit2(F_LTOSVAL2);
    	}else{
    	  emit2(F_LTOSVAL);
    	  code_expression(CDAR(n), 0, "binary operand");
    	}
    
    	emit2(CAR(n)->token);
    
    	emit2(n->token);
    	return n->token==F_ASSIGN;
          }
    
        default:
          switch(CDR(n)->token)
          {
          case F_LOCAL:
    	if(CDR(n)->u.number >= compiler_frame->max_number_of_locals)
    	  yyerror("Illegal to use local variable here.");
    
    	code_expression(CAR(n), 0, "RHS");
    	emit(flags & DO_POP ? F_ASSIGN_LOCAL_AND_POP:F_ASSIGN_LOCAL,
    	     CDR(n)->u.number );
    	break;
    
          case F_IDENTIFIER:
    	if(!IDENTIFIER_IS_VARIABLE( ID_FROM_INT(new_program, CDR(n)->u.number)->identifier_flags))
    	{
    	  yyerror("Cannot assign functions or constants.\n");
    	}else{
    	  code_expression(CAR(n), 0, "RHS");
    	  emit(flags & DO_POP ? F_ASSIGN_GLOBAL_AND_POP:F_ASSIGN_GLOBAL,
    	       CDR(n)->u.number);
    	}
    	break;
    
          default:
    	tmp1=do_docode(CDR(n),DO_LVALUE);
    	if(do_docode(CAR(n),0)!=1) yyerror("RHS is void!");
    	emit2(flags & DO_POP ? F_ASSIGN_AND_POP:F_ASSIGN);
    	break;
          }
          return flags & DO_POP ? 0 : 1;
        }
    
      case F_LAND:
      case F_LOR:
        tmp1=alloc_label();
        do_cond_jump(CAR(n), tmp1, n->token == F_LOR, 0);
        if(do_docode(CDR(n),0)!=1) fatal("Compiler logical error.\n");
        emit(F_LABEL,tmp1);
        return 1;
    
      case F_EQ:
      case F_NE:
      case F_ADD:
      case F_LT:
      case F_LE:
      case F_GT:
      case F_GE:
      case F_SUBTRACT:
      case F_MULTIPLY:
      case F_DIVIDE:
      case F_MOD:
      case F_LSH:
      case F_RSH:
      case F_XOR:
      case F_OR:
      case F_AND:
      case F_NOT:
      case F_COMPL:
      case F_NEGATE:
        fatal("Optimizer error.\n");
    
      case F_RANGE:
        tmp1=do_docode(CAR(n),DO_NOT_COPY);
        if(do_docode(CDR(n),DO_NOT_COPY)!=2)
          fatal("Compiler internal error (at %ld).\n",(long)lex.current_line);
        emit2(n->token);
        return tmp1;
    
      case F_INC:
      case F_POST_INC:
        tmp1=do_docode(CAR(n),DO_LVALUE);
    #ifdef DEBUG
        if(tmp1 != 2)
          fatal("HELP! FATAL INTERNAL COMPILER ERROR (1)\n");
    #endif
    
        if(flags & DO_POP)
        {
          emit2(F_INC_AND_POP);
          return 0;
        }else{
          emit2(n->token);
          return 1;
        }
    
      case F_DEC:
      case F_POST_DEC:
        tmp1=do_docode(CAR(n),DO_LVALUE);
    #ifdef DEBUG
        if(tmp1 != 2)
          fatal("HELP! FATAL INTERNAL COMPILER ERROR (2)\n");
    #endif
        if(flags & DO_POP)
        {
          emit2(F_DEC_AND_POP);
          return 0;
        }else{
          emit2(n->token);
          return 1;
        }
    
      case F_FOR:
      {
        INT32 *prev_switch_jumptable = current_switch_jumptable;
        INT32 break_save = current_break;
        INT32 continue_save = current_continue;
        
        current_switch_jumptable=0;
        current_break=alloc_label();
        current_continue=alloc_label();
    
        if(CDR(n))
        {
          do_jump_when_zero(CAR(n),current_break);
          tmp2=ins_label(-1);
          DO_CODE_BLOCK(CADR(n));
          ins_label(current_continue);
          DO_CODE_BLOCK(CDDR(n));
        }else{
          tmp2=ins_label(-1);
        }
        do_jump_when_non_zero(CAR(n),tmp2);
        ins_label(current_break);
    
        current_switch_jumptable = prev_switch_jumptable;
        current_break=break_save;
        current_continue=continue_save;
        return 0;
      }
    
      case ' ':
        return do_docode(CAR(n),0)+do_docode(CDR(n),DO_LVALUE);
    
      case F_FOREACH:
      {
        INT32 *prev_switch_jumptable = current_switch_jumptable;
        INT32 break_save = current_break;
        INT32 continue_save = current_continue;
    
        current_switch_jumptable=0;
        current_break=alloc_label();
        current_continue=alloc_label();
    
        tmp2=do_docode(CAR(n),DO_NOT_COPY);
        emit2(F_CONST0);
        tmp3=do_jump(F_BRANCH,-1);
        tmp1=ins_label(-1);
        DO_CODE_BLOCK(CDR(n));
        ins_label(current_continue);
        emit(F_LABEL,tmp3);
        do_jump(n->token,tmp1);
        ins_label(current_break);
    
        current_switch_jumptable = prev_switch_jumptable;
        current_break=break_save;
        current_continue=continue_save;
        do_pop(4);
        return 0;
      }
    
      case F_INC_NEQ_LOOP:
      case F_DEC_NEQ_LOOP:
      case F_INC_LOOP:
      case F_DEC_LOOP:
      {
        INT32 *prev_switch_jumptable = current_switch_jumptable;
        INT32 break_save = current_break;
        INT32 continue_save = current_continue;
    
        current_switch_jumptable=0;
        current_break=alloc_label();
        current_continue=alloc_label();
    
        tmp2=do_docode(CAR(n),0);
        tmp3=do_jump(F_BRANCH,-1);
        tmp1=ins_label(-1);
    
        DO_CODE_BLOCK(CDR(n));
        ins_label(current_continue);
        emit(F_LABEL,tmp3);
        do_jump(n->token,tmp1);
        ins_label(current_break);
    
        current_switch_jumptable = prev_switch_jumptable;
        current_break=break_save;
        current_continue=continue_save;
        do_pop(3);
        return 0;
      }
    
      case F_DO:
      {
        INT32 *prev_switch_jumptable = current_switch_jumptable;
        INT32 break_save = current_break;
        INT32 continue_save = current_continue;
    
        current_switch_jumptable=0;
        current_break=alloc_label();
        current_continue=alloc_label();
    
        tmp2=ins_label(-1);
        DO_CODE_BLOCK(CAR(n));
        ins_label(current_continue);
        do_jump_when_non_zero(CDR(n),tmp2);
        ins_label(current_break);
    
        current_switch_jumptable = prev_switch_jumptable;
        current_break=break_save;
        current_continue=continue_save;
        return 0;
      }
    
      case F_CAST:
        if(n->type==void_type_string)
        {
          DO_CODE_BLOCK(CAR(n));
          return 0;
        }
        tmp1=store_prog_string(n->type);
        emit(F_STRING,tmp1);
    
        tmp1=do_docode(CAR(n),0);
        if(!tmp1) { emit2(F_CONST0); tmp1=1; }
        if(tmp1>1) do_pop(tmp1-1);
    
        emit2(F_CAST);
        return 1;
    
      case F_APPLY:
        if(CAR(n)->token == F_CONSTANT)
        {
          if(CAR(n)->u.sval.type == T_FUNCTION)
          {
    	if(CAR(n)->u.sval.subtype == FUNCTION_BUILTIN) /* driver fun? */
    	{
    	  if(!CAR(n)->u.sval.u.efun->docode || 
    	     !CAR(n)->u.sval.u.efun->docode(n))
    	  {
    	    emit2(F_MARK);
    	    do_docode(CDR(n),0);
    	    tmp1=store_constant(& CAR(n)->u.sval,
    				!(CAR(n)->tree_info & OPT_EXTERNAL_DEPEND));
    	    emit(F_APPLY,tmp1);
    	  }
    	  if(n->type == void_type_string) return 0;
    	  return 1;
    	}else{
    	  if(CAR(n)->u.sval.u.object == fake_object)
    	  {
    	    emit2(F_MARK);
    	    do_docode(CDR(n),0);
    	    emit(F_CALL_LFUN, CAR(n)->u.sval.subtype);
    	    return 1;
    	  }
           	}
          }
    
          emit2(F_MARK);
          do_docode(CDR(n),0);
          tmp1=store_constant(& CAR(n)->u.sval,
    			  !(CAR(n)->tree_info & OPT_EXTERNAL_DEPEND));
          emit(F_APPLY,tmp1);
          
          return 1;
        }
        else if(CAR(n)->token == F_IDENTIFIER &&
    	    IDENTIFIER_IS_FUNCTION(ID_FROM_INT(new_program, CAR(n)->u.number)->identifier_flags))
        {
          emit2(F_MARK);
          do_docode(CDR(n),0);
          emit(F_CALL_LFUN, CAR(n)->u.number);
          return 1;
        }
        else
        {
          struct pike_string *tmp;
          struct efun *fun;
          node *foo;
    
          emit2(F_MARK);
          do_docode(CAR(n),0);
          do_docode(CDR(n),0);
    
          tmp=findstring("call_function");
          if(!tmp) yyerror("No call_function efun.");
          foo=find_module_identifier(tmp);
          if(!foo || !foo->token==F_CONSTANT)
          {
    	yyerror("No call_function efun.");
          }else{
    	if(foo->u.sval.type == T_FUNCTION &&
    	   foo->u.sval.subtype == FUNCTION_BUILTIN &&
    	   foo->u.sval.u.efun->function == f_call_function)
    	{
    	  emit2(F_CALL_FUNCTION);
    	}else{
    	  tmp1=store_constant(& foo->u.sval, 1);
    	  emit(F_APPLY, tmp1);
    	}
          }
          free_node(foo);
          return 1;
        }
    
      case F_ARG_LIST:
        tmp1=do_docode(CAR(n),flags & ~DO_LVALUE);
        tmp1+=do_docode(CDR(n),flags);
        return tmp1;
    
    
        /* Switch:
         * So far all switches are implemented with a binsearch lookup.
         * It stores the case values in the programs area for constants.
         * It also has a jump-table in the program itself, for every index in
         * the array of cases, there is 2 indexes in the jumptable, and one extra.
         * The first entry in the jumptable is used if you call switch with
         * a value that is ranked lower than all the indexes in the array of
         * cases. (Ranked by the binsearch that is) The second is used if it
         * is equal to the first index. The third if it is greater than the
         * first, but lesser than the second. The fourth if it is equal to
         * the second.... etc. etc.
         */
    
      case F_SWITCH:
      {
        INT32 e,cases,*order;
        INT32 *jumptable;
        INT32 prev_switch_values_on_stack = current_switch_values_on_stack;
        INT32 prev_switch_case = current_switch_case;
        INT32 prev_switch_default = current_switch_default;
        INT32 *prev_switch_jumptable = current_switch_jumptable;
        INT32 break_save = current_break;
    #ifdef DEBUG
        struct svalue *save_sp=sp;
    #endif
    
        if(do_docode(CAR(n),0)!=1)
          fatal("Internal compiler error, time to panic\n");
    
        current_break=alloc_label();
    
        cases=count_cases(CDR(n));
    
        tmp1=emit(F_SWITCH,0);
        emit(F_ALIGN,sizeof(INT32));
    
        current_switch_values_on_stack=0;
        current_switch_case=1;
        current_switch_default=-1;
        current_switch_jumptable=(INT32 *)xalloc(sizeof(INT32)*(cases*2+2));
        jumptable=(INT32 *)xalloc(sizeof(INT32)*(cases*2+2));
    
        for(e=1; e<cases*2+2; e++)
        {
          jumptable[e]=emit(F_POINTER, 0);
          current_switch_jumptable[e]=-1;
        }
    
        current_switch_jumptable[current_switch_case++]=-1;
    
        DO_CODE_BLOCK(CDR(n));
        
    #ifdef DEBUG
        if(sp-save_sp != cases)
          fatal("Count cases is wrong!\n");
    #endif
    
        f_aggregate(cases);
        order=get_switch_order(sp[-1].u.array);
    
        /* Check for cases inside a range */
        for(e=0; e<cases-1; e++)
        {
          if(order[e] < cases-1)
          {
    	int o1=order[e]*2+2;
    	if(current_switch_jumptable[o1]==current_switch_jumptable[o1+1] &&
    	   current_switch_jumptable[o1]==current_switch_jumptable[o1+2])
    	{
    	  if(order[e]+1 != order[e+1])
    	    yyerror("Case inside range.");
              e++;
    	}
          }
        }
    
        if(current_switch_default < 0)
          current_switch_default = ins_label(-1);
    
        for(e=1;e<cases*2+2;e++)
          if(current_switch_jumptable[e]==-1)
    	current_switch_jumptable[e]=current_switch_default;
    
        order_array(sp[-1].u.array,order);
    
        reorder((void *)(current_switch_jumptable+2),cases,sizeof(INT32)*2,order);
        free((char *)order);
    
        for(e=1; e<cases*2+2; e++)
          update_arg(jumptable[e], current_switch_jumptable[e]);
    
        update_arg(tmp1, store_constant(sp-1,1));
    
        pop_stack();
        free((char *)jumptable);
        free((char *)current_switch_jumptable);
    
        current_switch_jumptable = prev_switch_jumptable;
        current_switch_default = prev_switch_default;
        current_switch_case = prev_switch_case;
        current_switch_values_on_stack = prev_switch_values_on_stack ;
    
        emit(F_LABEL, current_break);
    
        current_break=break_save;
    #ifdef DEBUG
        if(recoveries && sp-evaluator_stack < recoveries->sp)
          fatal("Stack error after F_SWITCH (underflow)\n");
    #endif
        return 0;
      }
    
      case F_CASE:
      {
        if(!current_switch_jumptable)
        {
          yyerror("Case outside switch.");
        }else{
          node *lower=CAR(n);
          if(!lower) lower=CDR(n);
    
          if(!is_const(lower))
    	yyerror("Case label isn't constant.");
    
          tmp1=eval_low(lower);
          if(tmp1<1)
          {
    	yyerror("Error in case label.");
    	push_int(0);
    	tmp1=1;
          }
          pop_n_elems(tmp1-1);
          current_switch_values_on_stack++;
          for(tmp1=current_switch_values_on_stack; tmp1 > 1; tmp1--)
    	if(is_equal(sp-tmp1, sp-1))
    	  yyerror("Duplicate case.");
    
          current_switch_jumptable[current_switch_case++]=ins_label(-1);
    
          if(CDR(n))
          {
    	current_switch_jumptable[current_switch_case]=
    	  current_switch_jumptable[current_switch_case-1];
    	current_switch_case++;
    
    	if(CAR(n))
    	{
    	  if(!is_const(CDR(n)))
    	    yyerror("Case label isn't constant.");
    	  
    	  current_switch_jumptable[current_switch_case]=
    	    current_switch_jumptable[current_switch_case-1];
    	  current_switch_case++;
    
    	  tmp1=eval_low(CDR(n));
    	  if(tmp1<1)
    	  {
    	    yyerror("Error in second half of case label.");
    	    push_int(0);
    	    tmp1=1;
    	  }
    	  pop_n_elems(tmp1-1);
    	  current_switch_values_on_stack++;
    	  for(tmp1=current_switch_values_on_stack; tmp1 > 1; tmp1--)
    	    if(is_equal(sp-tmp1, sp-1))
    	      yyerror("Duplicate case.");
    	  current_switch_jumptable[current_switch_case++]=-1;
    	}
          }else{
    	current_switch_jumptable[current_switch_case++]=-1;
          }
        }
        return 0;
      }
    
      case F_DEFAULT:
        if(!current_switch_jumptable)
        {
          yyerror("Default outside switch.");
        }else if(current_switch_default!=-1){
          yyerror("Duplicate switch default.");
        }else{
          current_switch_default = ins_label(-1);
        }
        return 0;
    
      case F_BREAK:
        if(current_break == -1)
        {
          yyerror("Break outside loop or switch.");
        }else{
          do_jump(F_BRANCH, current_break);
        }
        return 0;
    
      case F_CONTINUE:
        if(current_continue == -1)
        {
          yyerror("continue outside loop or switch.");
        }else{
          do_jump(F_BRANCH, current_continue);
        }
        return 0;
    
      case F_RETURN:
        do_docode(CAR(n),0);
        emit2(F_RETURN);
        return 0;
    
      case F_SSCANF:
        tmp1=do_docode(CAR(n),DO_NOT_COPY);
        tmp2=do_docode(CDR(n),DO_NOT_COPY | DO_LVALUE);
        emit(F_SSCANF,tmp1+tmp2);
        return 1;
    
      case F_CATCH:
      {
        INT32 break_save = current_break;
        INT32 continue_save = current_continue;
        INT32 *prev_switch_jumptable = current_switch_jumptable;
    
        current_switch_jumptable=0;
        current_break=alloc_label();
        current_continue=alloc_label();
    
        tmp1=do_jump(F_CATCH,-1);
        DO_CODE_BLOCK(CAR(n));
        ins_label(current_continue);
        ins_label(current_break);
        emit2(F_THROW_ZERO);
        ins_label(tmp1);
    
        current_break=break_save;
        current_continue=continue_save;
        current_switch_jumptable = prev_switch_jumptable;
        return 1;
      }
    
      case F_LVALUE_LIST:
        return do_docode(CAR(n),DO_LVALUE)+do_docode(CDR(n),DO_LVALUE);
    
        case F_ARRAY_LVALUE:
          tmp1=do_docode(CAR(n),DO_LVALUE);
    #ifdef DEBUG
          if(tmp1 & 1)
    	fatal("Very internal compiler error.\n");
    #endif
          emit(F_ARRAY_LVALUE, tmp1>>1);
          return 2;
    
      case F_ARROW:
        if(CDR(n)->token != F_CONSTANT || CDR(n)->u.sval.type!=T_STRING)
          fatal("Bugg in F_ARROW, index not string.");
        if(flags & DO_LVALUE)
        {
          /* FIXME!!!! ??? I wonder what needs fixing... /Hubbe */
          tmp1=do_docode(CAR(n), 0);
          emit(F_ARROW_STRING, store_prog_string(CDR(n)->u.sval.u.string));
          return 2;
        }else{
          tmp1=do_docode(CAR(n), DO_NOT_COPY);
          emit(F_ARROW, store_prog_string(CDR(n)->u.sval.u.string));
          if(!(flags & DO_NOT_COPY))
          {
    	while(n && (n->token==F_INDEX || n->token==F_ARROW)) n=CAR(n);
    	if(n->token==F_CONSTANT && !(n->node_info & OPT_EXTERNAL_DEPEND))
    	  emit2(F_COPY_VALUE);
          }
        }
        return tmp1;
    
      case F_INDEX:
        if(flags & DO_LVALUE)
        {
          tmp1=do_docode(CAR(n), 0);
          if(do_docode(CDR(n),0) != 1)
    	fatal("Internal compiler error, please report this (1).");
          if(CDR(n)->token != F_CONSTANT &&
    	match_types(CDR(n)->type, string_type_string))
    	emit2(F_CLEAR_STRING_SUBTYPE);
          return 2;
        }else{
          tmp1=do_docode(CAR(n), DO_NOT_COPY);
          code_expression(CDR(n), DO_NOT_COPY, "index");
          emit2(F_INDEX);
          if(!(flags & DO_NOT_COPY))
          {
    	while(n && (n->token==F_INDEX || n->token==F_ARROW)) n=CAR(n);
    	if(n->token==F_CONSTANT && !(n->node_info & OPT_EXTERNAL_DEPEND))
    	  emit2(F_COPY_VALUE);
          }
        }
        return tmp1;
    
      case F_CONSTANT:
        switch(n->u.sval.type)
        {
        case T_INT:
          emit(F_NUMBER,n->u.sval.u.integer);
          return 1;
    
        case T_STRING:
          tmp1=store_prog_string(n->u.sval.u.string);
          emit(F_STRING,tmp1);
          return 1;
    
        case T_FUNCTION:
          if(n->u.sval.subtype!=FUNCTION_BUILTIN)
          {
    	if(n->u.sval.u.object == fake_object)
    	{
    	  emit(F_LFUN,n->u.sval.subtype);
    	  return 1;
    	}
    
    	if(n->u.sval.u.object->next == n->u.sval.u.object)
    	{
    	  int x=0;
    	  struct object *o;
    	  
    	  for(o=fake_object->parent;o!=n->u.sval.u.object;o=o->parent)
    	    x++;
    	  emit(F_LDA, x);
    	  emit(F_EXTERNAL, n->u.sval.subtype);
    	  return 1;
    	}
          }
          
    #ifdef DEBUG
          case T_OBJECT:
    	if(n->u.sval.u.object->next == n->u.sval.u.object)
    	  fatal("Internal error: Pointer to parent cannot be a compile time constant!\n");
    #endif
    
        default:
          tmp1=store_constant(&(n->u.sval),!(n->tree_info & OPT_EXTERNAL_DEPEND));
          emit(F_CONSTANT,tmp1);
          return 1;
    
        case T_ARRAY:
        case T_MAPPING:
        case T_MULTISET:
          tmp1=store_constant(&(n->u.sval),!(n->tree_info & OPT_EXTERNAL_DEPEND));
          emit(F_CONSTANT,tmp1);
          
          /* copy now or later ? */
          if(!(flags & DO_NOT_COPY) && !(n->tree_info & OPT_EXTERNAL_DEPEND))
    	emit2(F_COPY_VALUE);
          return 1;
    
        }
    
      case F_LOCAL:
        if(n->u.number >= compiler_frame->max_number_of_locals)
          yyerror("Illegal to use local variable here.");
        if(flags & DO_LVALUE)
        {
          emit(F_LOCAL_LVALUE,n->u.number);
          return 2;
        }else{
          emit(F_LOCAL,n->u.number);
          return 1;
        }
    
      case F_IDENTIFIER:
        if(IDENTIFIER_IS_FUNCTION(ID_FROM_INT(new_program, n->u.number)->identifier_flags))
        {
          if(flags & DO_LVALUE)
          {
    	yyerror("Cannot assign functions.\n");
          }else{
    	emit(F_LFUN,n->u.number);
          }
        }else{
          if(flags & DO_LVALUE)
          {
    	emit(F_GLOBAL_LVALUE,n->u.number);
    	return 2;
          }else{
    	emit(F_GLOBAL,n->u.number);
          }
        }
        return 1;
    
      case F_VAL_LVAL:
        return do_docode(CAR(n),flags)+do_docode(CDR(n),flags | DO_LVALUE);
        
      default:
        fatal("Infernal compiler error (unknown parse-tree-token).\n");
        return 0;			/* make gcc happy */
      }
    }
    
    void do_code_block(node *n)
    {
      init_bytecode();
      label_no=0;
      DO_CODE_BLOCK(n);
      assemble();
    }
    
    int docode(node *n)
    {
      int tmp;
      int label_no_save = label_no;
      dynamic_buffer instrbuf_save = instrbuf;
    
      instrbuf.s.str=0;
      label_no=0;
      init_bytecode();
    
      tmp=do_docode(n,0);
      assemble();
    
      instrbuf=instrbuf_save;
      label_no = label_no_save;
      return tmp;
    }