Skip to content
Snippets Groups Projects
Forked from Nettle / nettle
4681 commits behind the upstream repository.
  • Niels Möller's avatar
    2ed0c4b5
    Hacked configure scripts, makefiles and crypto_types.h. · 2ed0c4b5
    Niels Möller authored
    Rev: src/symmetric/Makefile.in:1.2
    Rev: src/symmetric/cast.c:1.2
    Rev: src/symmetric/configure.in:1.2
    Rev: src/symmetric/desCode.h:1.2
    Rev: src/symmetric/desKerb.c:1.2
    Rev: src/symmetric/desQuick.c:1.2
    Rev: src/symmetric/desUtil.c:1.2
    Rev: src/symmetric/desdata.c:1.2
    Rev: src/symmetric/idea.c:1.2
    Rev: src/symmetric/include/cast.h:1.2
    Rev: src/symmetric/include/crypto_types.h:1.2
    Rev: src/symmetric/include/des.h:1.2
    Rev: src/symmetric/include/idea.h:1.2
    Rev: src/symmetric/include/md5.h:1.2
    Rev: src/symmetric/include/rc4.h:1.2
    Rev: src/symmetric/include/sha.h:1.2
    Rev: src/symmetric/md5.c:1.2
    Rev: src/symmetric/rc4.c:1.2
    Rev: src/symmetric/sha.c:1.2
    2ed0c4b5
    History
    Hacked configure scripts, makefiles and crypto_types.h.
    Niels Möller authored
    Rev: src/symmetric/Makefile.in:1.2
    Rev: src/symmetric/cast.c:1.2
    Rev: src/symmetric/configure.in:1.2
    Rev: src/symmetric/desCode.h:1.2
    Rev: src/symmetric/desKerb.c:1.2
    Rev: src/symmetric/desQuick.c:1.2
    Rev: src/symmetric/desUtil.c:1.2
    Rev: src/symmetric/desdata.c:1.2
    Rev: src/symmetric/idea.c:1.2
    Rev: src/symmetric/include/cast.h:1.2
    Rev: src/symmetric/include/crypto_types.h:1.2
    Rev: src/symmetric/include/des.h:1.2
    Rev: src/symmetric/include/idea.h:1.2
    Rev: src/symmetric/include/md5.h:1.2
    Rev: src/symmetric/include/rc4.h:1.2
    Rev: src/symmetric/include/sha.h:1.2
    Rev: src/symmetric/md5.c:1.2
    Rev: src/symmetric/rc4.c:1.2
    Rev: src/symmetric/sha.c:1.2
cast.c 7.05 KiB
/*
 * $Id$
 *
 *	CAST-128 in C
 *	Written by Steve Reid <sreid@sea-to-sky.net>
 *	100% Public Domain - no warranty
 *	Released 1997.10.11
 */

/* Adapted to the pike cryptographic toolkit by Niels Mller */

#include <cast.h>

#define u8 UINT8
#define u32 UINT32

#include "cast_sboxes.h"

/* Macros to access 8-bit bytes out of a 32-bit word */
#define U8a(x) ( (u8) (x>>24) )
#define U8b(x) ( (u8) ((x>>16)&255) )
#define U8c(x) ( (u8) ((x>>8)&255) )
#define U8d(x) ( (u8) ((x)&255) )

/* Circular left shift */
#define ROL(x, n) ( ((x)<<(n)) | ((x)>>(32-(n))) )

/* CAST-128 uses three different round functions */
#define F1(l, r, i) \
	t = ROL(key->xkey[i] + r, key->xkey[i+16]); \
	l ^= ((cast_sbox1[U8a(t)] ^ cast_sbox2[U8b(t)]) \
	 - cast_sbox3[U8c(t)]) + cast_sbox4[U8d(t)];
#define F2(l, r, i) \
	t = ROL(key->xkey[i] ^ r, key->xkey[i+16]); \
	l ^= ((cast_sbox1[U8a(t)] - cast_sbox2[U8b(t)]) \
	 + cast_sbox3[U8c(t)]) ^ cast_sbox4[U8d(t)];
#define F3(l, r, i) \
	t = ROL(key->xkey[i] - r, key->xkey[i+16]); \
	l ^= ((cast_sbox1[U8a(t)] + cast_sbox2[U8b(t)]) \
	 ^ cast_sbox3[U8c(t)]) - cast_sbox4[U8d(t)];


/***** Encryption Function *****/

void cast_encrypt(struct cast_key *key, u8 *inblock, u8 *outblock)
{
  u32 t, l, r;

  /* Get inblock into l,r */
  l = ((u32)inblock[0] << 24) | ((u32)inblock[1] << 16)
    | ((u32)inblock[2] << 8) | (u32)inblock[3];
  r = ((u32)inblock[4] << 24) | ((u32)inblock[5] << 16)
    | ((u32)inblock[6] << 8) | (u32)inblock[7];
  /* Do the work */
  F1(l, r,  0);
  F2(r, l,  1);
  F3(l, r,  2);
  F1(r, l,  3);
  F2(l, r,  4);
  F3(r, l,  5);
  F1(l, r,  6);
  F2(r, l,  7);
  F3(l, r,  8);
  F1(r, l,  9);
  F2(l, r, 10);
  F3(r, l, 11);
  /* Only do full 16 rounds if key length > 80 bits */
  if (key->rounds > 12) {
    F1(l, r, 12);
    F2(r, l, 13);
    F3(l, r, 14);
    F1(r, l, 15);
  }
  /* Put l,r into outblock */
  outblock[0] = U8a(r);
  outblock[1] = U8b(r);
  outblock[2] = U8c(r);
  outblock[3] = U8d(r);
  outblock[4] = U8a(l);
  outblock[5] = U8b(l);
  outblock[6] = U8c(l);
  outblock[7] = U8d(l);
  /* Wipe clean */
  t = l = r = 0;
}


/***** Decryption Function *****/

void cast_decrypt(struct cast_key *key, u8 *inblock, u8 *outblock)
{
  u32 t, l, r;

  /* Get inblock into l,r */
  r = ((u32)inblock[0] << 24) | ((u32)inblock[1] << 16)
    | ((u32)inblock[2] << 8) | (u32)inblock[3];
  l = ((u32)inblock[4] << 24) | ((u32)inblock[5] << 16)
    | ((u32)inblock[6] << 8) | (u32)inblock[7];
  /* Do the work */
  /* Only do full 16 rounds if key length > 80 bits */
  if (key->rounds > 12) {
    F1(r, l, 15);
    F3(l, r, 14);
    F2(r, l, 13);
    F1(l, r, 12);
  }
  F3(r, l, 11);
  F2(l, r, 10);
  F1(r, l,  9);
  F3(l, r,  8);
  F2(r, l,  7);
  F1(l, r,  6);
  F3(r, l,  5);
  F2(l, r,  4);
  F1(r, l,  3);
  F3(l, r,  2);
  F2(r, l,  1);
  F1(l, r,  0);
  /* Put l,r into outblock */
  outblock[0] = U8a(l);
  outblock[1] = U8b(l);
  outblock[2] = U8c(l);
  outblock[3] = U8d(l);
  outblock[4] = U8a(r);
  outblock[5] = U8b(r);
  outblock[6] = U8c(r);
  outblock[7] = U8d(r);
  /* Wipe clean */
  t = l = r = 0;
}


/***** Key Schedual *****/

void cast_setkey(struct cast_key *key, u8 *rawkey, unsigned keybytes)
{
  u32 t[4], z[4], x[4];
  unsigned i;

  /* Set number of rounds to 12 or 16, depending on key length */
  key->rounds = (keybytes <= CAST_SMALL_KEY)
    ? CAST_SMALL_ROUNDS : CAST_FULL_ROUNDS;

  /* Copy key to workspace x */
  for (i = 0; i < 4; i++) {
    x[i] = 0;
    if ((i*4+0) < keybytes) x[i] = (u32)rawkey[i*4+0] << 24;
    if ((i*4+1) < keybytes) x[i] |= (u32)rawkey[i*4+1] << 16;
    if ((i*4+2) < keybytes) x[i] |= (u32)rawkey[i*4+2] << 8;
    if ((i*4+3) < keybytes) x[i] |= (u32)rawkey[i*4+3];
  }
  /* Generate 32 subkeys, four at a time */
  for (i = 0; i < 32; i+=4) {
    switch (i & 4) {
    case 0:
      t[0] = z[0] = x[0] ^ cast_sbox5[U8b(x[3])]
	^ cast_sbox6[U8d(x[3])] ^ cast_sbox7[U8a(x[3])]
	^ cast_sbox8[U8c(x[3])] ^ cast_sbox7[U8a(x[2])];
      t[1] = z[1] = x[2] ^ cast_sbox5[U8a(z[0])]
	^ cast_sbox6[U8c(z[0])] ^ cast_sbox7[U8b(z[0])]
	^ cast_sbox8[U8d(z[0])] ^ cast_sbox8[U8c(x[2])];
      t[2] = z[2] = x[3] ^ cast_sbox5[U8d(z[1])]
	^ cast_sbox6[U8c(z[1])] ^ cast_sbox7[U8b(z[1])]
	^ cast_sbox8[U8a(z[1])] ^ cast_sbox5[U8b(x[2])];
      t[3] = z[3] = x[1] ^ cast_sbox5[U8c(z[2])] ^
	cast_sbox6[U8b(z[2])] ^ cast_sbox7[U8d(z[2])]
	^ cast_sbox8[U8a(z[2])] ^ cast_sbox6[U8d(x[2])];
      break;
    case 4:
      t[0] = x[0] = z[2] ^ cast_sbox5[U8b(z[1])]
	^ cast_sbox6[U8d(z[1])] ^ cast_sbox7[U8a(z[1])]
	^ cast_sbox8[U8c(z[1])] ^ cast_sbox7[U8a(z[0])];
      t[1] = x[1] = z[0] ^ cast_sbox5[U8a(x[0])]
	^ cast_sbox6[U8c(x[0])] ^ cast_sbox7[U8b(x[0])]
	^ cast_sbox8[U8d(x[0])] ^ cast_sbox8[U8c(z[0])];
      t[2] = x[2] = z[1] ^ cast_sbox5[U8d(x[1])]
	^ cast_sbox6[U8c(x[1])] ^ cast_sbox7[U8b(x[1])]
	^ cast_sbox8[U8a(x[1])] ^ cast_sbox5[U8b(z[0])];
      t[3] = x[3] = z[3] ^ cast_sbox5[U8c(x[2])]
	^ cast_sbox6[U8b(x[2])] ^ cast_sbox7[U8d(x[2])]
	^ cast_sbox8[U8a(x[2])] ^ cast_sbox6[U8d(z[0])];
      break;
    }
    switch (i & 12) {
    case 0:
    case 12:
      key->xkey[i+0] = cast_sbox5[U8a(t[2])] ^ cast_sbox6[U8b(t[2])]
	^ cast_sbox7[U8d(t[1])] ^ cast_sbox8[U8c(t[1])];
      key->xkey[i+1] = cast_sbox5[U8c(t[2])] ^ cast_sbox6[U8d(t[2])]
	^ cast_sbox7[U8b(t[1])] ^ cast_sbox8[U8a(t[1])];
      key->xkey[i+2] = cast_sbox5[U8a(t[3])] ^ cast_sbox6[U8b(t[3])]
	^ cast_sbox7[U8d(t[0])] ^ cast_sbox8[U8c(t[0])];
      key->xkey[i+3] = cast_sbox5[U8c(t[3])] ^ cast_sbox6[U8d(t[3])]
	^ cast_sbox7[U8b(t[0])] ^ cast_sbox8[U8a(t[0])];
      break;
    case 4:
    case 8:
      key->xkey[i+0] = cast_sbox5[U8d(t[0])] ^ cast_sbox6[U8c(t[0])]
	^ cast_sbox7[U8a(t[3])] ^ cast_sbox8[U8b(t[3])];
      key->xkey[i+1] = cast_sbox5[U8b(t[0])] ^ cast_sbox6[U8a(t[0])]
	^ cast_sbox7[U8c(t[3])] ^ cast_sbox8[U8d(t[3])];
      key->xkey[i+2] = cast_sbox5[U8d(t[1])] ^ cast_sbox6[U8c(t[1])]
	^ cast_sbox7[U8a(t[2])] ^ cast_sbox8[U8b(t[2])];
      key->xkey[i+3] = cast_sbox5[U8b(t[1])] ^ cast_sbox6[U8a(t[1])]
	^ cast_sbox7[U8c(t[2])] ^ cast_sbox8[U8d(t[2])];
      break;
    }
    switch (i & 12) {
    case 0:
      key->xkey[i+0] ^= cast_sbox5[U8c(z[0])];
      key->xkey[i+1] ^= cast_sbox6[U8c(z[1])];
      key->xkey[i+2] ^= cast_sbox7[U8b(z[2])];
      key->xkey[i+3] ^= cast_sbox8[U8a(z[3])];
      break;
    case 4:
      key->xkey[i+0] ^= cast_sbox5[U8a(x[2])];
      key->xkey[i+1] ^= cast_sbox6[U8b(x[3])];
      key->xkey[i+2] ^= cast_sbox7[U8d(x[0])];
      key->xkey[i+3] ^= cast_sbox8[U8d(x[1])];
      break;
    case 8:
      key->xkey[i+0] ^= cast_sbox5[U8b(z[2])];
      key->xkey[i+1] ^= cast_sbox6[U8a(z[3])];
      key->xkey[i+2] ^= cast_sbox7[U8c(z[0])];
      key->xkey[i+3] ^= cast_sbox8[U8c(z[1])];
      break;
    case 12:
      key->xkey[i+0] ^= cast_sbox5[U8d(x[0])];
      key->xkey[i+1] ^= cast_sbox6[U8d(x[1])];
      key->xkey[i+2] ^= cast_sbox7[U8a(x[2])];
      key->xkey[i+3] ^= cast_sbox8[U8b(x[3])];
      break;
    }
    if (i >= 16) {
      key->xkey[i+0] &= 31;
      key->xkey[i+1] &= 31;
      key->xkey[i+2] &= 31;
      key->xkey[i+3] &= 31;
    }
  }
  /* Wipe clean */
  for (i = 0; i < 4; i++) {
    t[i] = x[i] = z[i] = 0;
  }
}

/* Made in Canada */