Skip to content
Snippets Groups Projects
Select Git revision
  • nettle_3.1.1_release_20150424
  • master default protected
  • streebog
  • gost28147
  • master-updates
  • ed448
  • shake256
  • curve448
  • ecc-sqrt
  • gosthash94cp
  • cmac64
  • block16-refactor
  • siv-mode
  • cmac-layout
  • delete-des-compat
  • delete-rsa_blind
  • aes-struct-layout
  • release-3.4-fixes
  • struct-layout
  • attribute-deprecated
  • rename-data-symbols
  • nettle_3.5.1_release_20190627
  • nettle_3.5_release_20190626
  • nettle_3.5rc1
  • nettle_3.4.1_release_20181204
  • nettle_3.4.1rc1
  • nettle_3.4_release_20171119
  • nettle_3.4rc2
  • nettle_3.4rc1
  • nettle_3.3_release_20161001
  • nettle_3.2_release_20160128
  • nettle_3.1_release_20150407
  • nettle_3.1rc3
  • nettle_3.1rc2
  • nettle_3.1rc1
  • nettle_3.0_release_20140607
  • nettle_2.7.1_release_20130528
  • nettle_2.7_release_20130424
  • nettle_2.6_release_20130116
  • nettle_2.5_release_20120707
40 results

aes192-meta.c

Blame
  • Forked from Nettle / nettle
    Source project has a limited visibility.
    twofish.c 15.86 KiB
    /* twofish.c
     *
     * The twofish block cipher.
     */
    
    /* twofish - An implementation of the twofish cipher.
     * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
     *
     * Modifications for lsh, integrated testing
     * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
     *
     * Integrated with the nettle library,
     * Copyright (C) 2001 Niels Mller
     */
    
    /* nettle, low-level cryptographics library
     *
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
     * The nettle Library is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    #include "twofish.h"
    
    #include "macros.h"
    
    #include <assert.h>
    
    /* Bitwise rotations on 32-bit words.  These are defined as macros that
     * evaluate their argument twice, so do not apply to any expressions with
     * side effects.
     */
    
    #define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
    #define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
    #define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
    #define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))
    
    /* ------------------------------------------------------------------------- */
    
    /* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
     * The permutations have been computed using the program generate_q
     * which is distributed along with this file.
     */
    
    static const uint8_t q0[] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
                         0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
                         0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
                         0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
                         0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
                         0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
                         0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
                         0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
                         0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
                         0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
                         0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
                         0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
                         0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
                         0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
                         0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
                         0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
                         0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
                         0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
                         0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
                         0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
                         0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
                         0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
                         0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
                         0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
                         0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
                         0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
                         0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
                         0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
                         0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
                         0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
                         0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
                         0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0, };
    
    static const uint8_t q1[] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
                         0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
                         0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
                         0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
                         0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
                         0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
                         0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
                         0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
                         0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
                         0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
                         0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
                         0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
                         0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
                         0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
                         0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
                         0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
                         0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
                         0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
                         0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
                         0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
                         0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
                         0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
                         0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
                         0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
                         0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
                         0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
                         0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
                         0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
                         0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
                         0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
                         0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
                         0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91, };
    
    /* ------------------------------------------------------------------------- */
    
    /* uint8_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
     *
     * Multiplication in GF(2^8).
     *
     * This function multiplies a times b in the Galois Field GF(2^8) with
     * primitive polynomial p.
     * The representation of the polynomials a, b, and p uses bits with
     * values 2^i to represent the terms x^i.  The polynomial p contains an
     * implicit term x^8.
     *
     * Note that addition and subtraction in GF(2^8) is simply the XOR
     * operation.
     */
    
    static uint8_t
    gf_multiply(uint8_t p, uint8_t a, uint8_t b)
    {
      uint32_t shift  = b;
      uint8_t result = 0;
      while (a)
        {
          if (a & 1) result ^= shift;
          a = a >> 1;
          shift = shift << 1;
          if (shift & 0x100) shift ^= p;
        }
      return result;
    }
    
    /* ------------------------------------------------------------------------- */
    
    /* The matrix RS as specified in section 4.3 the twofish paper. */
    
    static const uint8_t rs_matrix[4][8] = {
        { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
        { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
        { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
        { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };
    
    /* uint32_t compute_s(uint32_t m1, uint32_t m2);
     *
     * Computes the value RS * M, where M is a byte vector composed of the
     * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
     * polynomial x^8 + x^6 + x^3 + x^2 + 1.
     *
     * This function is used to compute the sub-keys S which are in turn used
     * to generate the S-boxes.
     */
    
    static uint32_t
    compute_s(uint32_t m1, uint32_t m2)
    {
      uint32_t s = 0;
      int i;
      for (i = 0; i < 4; i++)
        s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
    	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
    	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
    	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
    	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
    	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
    	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
    	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
      return s;
    }
    
    /* ------------------------------------------------------------------------- */
    
    /* This table describes which q S-boxes are used for each byte in each stage
     * of the function h, cf. figure 2 of the twofish paper.
     */
    
    static const uint8_t * q_table[4][5] = { { q1, q1, q0, q0, q1 },
                                    { q0, q1, q1, q0, q0 },
                                    { q0, q0, q0, q1, q1 },
                                    { q1, q0, q1, q1, q0 } };
    
    /* The matrix MDS as specified in section 4.3.2 of the twofish paper. */
    
    static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
    				 { 0x5B, 0xEF, 0xEF, 0x01 },
    				 { 0xEF, 0x5B, 0x01, 0xEF },
    				 { 0xEF, 0x01, 0xEF, 0x5B } };
    
    /* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
     *
     * Perform the h function (section 4.3.2) on one byte.  It consists of
     * repeated applications of the q permutation, followed by a XOR with
     * part of a sub-key.  Finally, the value is multiplied by one column of
     * the MDS matrix.  To obtain the result for a full word, the results of
     * h for the individual bytes are XORed.
     *
     * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
     * actual byte to apply the function to; l0, l1, l2, and l3 are the
     * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
     */
    
    static uint32_t
    h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
    {
      uint8_t y = q_table[i][4][l0 ^
                q_table[i][3][l1 ^
                  q_table[i][2][k == 2 ? x : l2 ^
                    q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];
    
      return ( ((uint32_t)gf_multiply(0x69, mds_matrix[0][i], y))
    	   | ((uint32_t)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
    	   | ((uint32_t)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
    	   | ((uint32_t)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
    }
    
    /* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
     *
     * Perform the function h on a word.  See the description of h_byte() above.
     */
    
    static uint32_t
    h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
    {
      return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
    	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
    	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
    	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
    }
    
    
    /* ------------------------------------------------------------------------- */
    
    /* API */
    
    /* Structure which contains the tables containing the subkeys and the
     * key-dependent s-boxes.
     */
    
    
    /* Set up internal tables required for twofish encryption and decryption.
     *
     * The key size is specified in bytes.  Key sizes up to 32 bytes are
     * supported.  Larger key sizes are silently truncated.  
     */
    
    void
    twofish_set_key(struct twofish_ctx *context,
    		unsigned keysize, const uint8_t *key)
    {
      uint8_t key_copy[32];
      uint32_t m[8], s[4], t;
      int i, j, k;
    
      /* Extend key as necessary */
    
      assert(keysize <= 32);
    
      /* We do a little more copying than necessary, but that doesn't
       * really matter. */
      memset(key_copy, 0, 32);
      memcpy(key_copy, key, keysize);
    
      for (i = 0; i<8; i++)
        m[i] = LE_READ_UINT32(key_copy + i*4);
      
      if (keysize <= 16)
        k = 2;
      else if (keysize <= 24)
        k = 3;
      else
        k = 4;
    
      /* Compute sub-keys */
    
      for (i = 0; i < 20; i++)
        {
          t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
          t = rol8(t);
          t += (context->keys[2*i] =
    	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
          t = rol9(t);
          context->keys[2*i+1] = t;
        }
    
      /* Compute key-dependent S-boxes */
    
      for (i = 0; i < k; i++)
        s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
    
      for (i = 0; i < 4; i++)
        for (j = 0; j < 256; j++)
          context->s_box[i][j] = h_byte(k, i, j,
    				    s[0] >> (i*8),
    				    s[1] >> (i*8),
    				    s[2] >> (i*8),
    				    s[3] >> (i*8));
    }
    
    /* Encrypt blocks of 16 bytes of data with the twofish algorithm.
     *
     * Before this function can be used, twofish_set_key() must be used in order to
     * set up various tables required for the encryption algorithm.
     * 
     * This function always encrypts 16 bytes of plaintext to 16 bytes of
     * ciphertext.  The memory areas of the plaintext and the ciphertext can
     * overlap.
     */
    
    void
    twofish_encrypt(struct twofish_ctx *context,
    		unsigned length,
    		uint8_t *ciphertext,
    		const uint8_t *plaintext)
    {
      uint32_t * keys        = context->keys;
      uint32_t (*s_box)[256] = context->s_box;
    
      assert( !(length % TWOFISH_BLOCK_SIZE) );
      for ( ; length; length -= TWOFISH_BLOCK_SIZE);
        {  
          uint32_t words[4];
          uint32_t r0, r1, r2, r3, t0, t1;
          int i;
    
          for (i = 0; i<4; i++, plaintext += 4)
    	words[i] = LE_READ_UINT32(plaintext);
    
          r0 = words[0] ^ keys[0];
          r1 = words[1] ^ keys[1];
          r2 = words[2] ^ keys[2];
          r3 = words[3] ^ keys[3];
      
          for (i = 0; i < 8; i++) {
    	t1 = (  s_box[1][r1 & 0xFF]
    		^ s_box[2][(r1 >> 8) & 0xFF]
    		^ s_box[3][(r1 >> 16) & 0xFF]
    		^ s_box[0][(r1 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r0 & 0xFF]
    		^ s_box[1][(r0 >> 8) & 0xFF]
    		^ s_box[2][(r0 >> 16) & 0xFF]
    		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    	r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
    	r2 = (t0 + keys[4*i+8]) ^ r2;
    	r2 = ror1(r2);
    
    	t1 = (  s_box[1][r3 & 0xFF]
    		^ s_box[2][(r3 >> 8) & 0xFF]
    		^ s_box[3][(r3 >> 16) & 0xFF]
    		^ s_box[0][(r3 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r2 & 0xFF]
    		^ s_box[1][(r2 >> 8) & 0xFF]
    		^ s_box[2][(r2 >> 16) & 0xFF]
    		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    	r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
    	r0 = (t0 + keys[4*i+10]) ^ r0;
    	r0 = ror1(r0);
          }
    
          words[0] = r2 ^ keys[4];
          words[1] = r3 ^ keys[5];
          words[2] = r0 ^ keys[6];
          words[3] = r1 ^ keys[7];
    
          for (i = 0; i<4; i++, ciphertext += 4)
    	LE_WRITE_UINT32(ciphertext, words[i]);
        }
    }
    
    /* Decrypt blocks of 16 bytes of data with the twofish algorithm.
     *
     * Before this function can be used, twofish_set_key() must be used in order to
     * set up various tables required for the decryption algorithm.
     * 
     * This function always decrypts 16 bytes of ciphertext to 16 bytes of
     * plaintext.  The memory areas of the plaintext and the ciphertext can
     * overlap.
     */
    
    void
    twofish_decrypt(struct twofish_ctx *context,
    		unsigned length,
    		uint8_t *plaintext,
    		const uint8_t *ciphertext)
    
    {
      uint32_t *keys  = context->keys;
      uint32_t (*s_box)[256] = context->s_box;
    
      assert( !(length % TWOFISH_BLOCK_SIZE) );
      for ( ; length; length -= TWOFISH_BLOCK_SIZE);
        {  
          uint32_t words[4];
          uint32_t r0, r1, r2, r3, t0, t1;
          int i;
    
          for (i = 0; i<4; i++, ciphertext += 4)
    	words[i] = LE_READ_UINT32(ciphertext);
    
          r0 = words[2] ^ keys[6];
          r1 = words[3] ^ keys[7];
          r2 = words[0] ^ keys[4];
          r3 = words[1] ^ keys[5];
    
          for (i = 0; i < 8; i++) {
    	t1 = (  s_box[1][r3 & 0xFF]
    		^ s_box[2][(r3 >> 8) & 0xFF]
    		^ s_box[3][(r3 >> 16) & 0xFF]
    		^ s_box[0][(r3 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r2 & 0xFF]
    		^ s_box[1][(r2 >> 8) & 0xFF]
    		^ s_box[2][(r2 >> 16) & 0xFF]
    		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    	r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
    	r1 = ror1(r1);
    	r0 = (t0 + keys[38-4*i]) ^ rol1(r0);
    
    	t1 = (  s_box[1][r1 & 0xFF]
    		^ s_box[2][(r1 >> 8) & 0xFF]
    		^ s_box[3][(r1 >> 16) & 0xFF]
    		^ s_box[0][(r1 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r0 & 0xFF]
    		^ s_box[1][(r0 >> 8) & 0xFF]
    		^ s_box[2][(r0 >> 16) & 0xFF]
    		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    	r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
    	r3 = ror1(r3);
    	r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
          }
    
          words[0] = r0 ^ keys[0];
          words[1] = r1 ^ keys[1];
          words[2] = r2 ^ keys[2];
          words[3] = r3 ^ keys[3];
    
          for (i = 0; i<4; i++, plaintext += 4)
    	LE_WRITE_UINT32(plaintext, words[i]);
        }
    }