Skip to content
Snippets Groups Projects
Select Git revision
  • nettle_3.1.1_release_20150424
  • master default protected
  • streebog
  • gost28147
  • master-updates
  • ed448
  • shake256
  • curve448
  • ecc-sqrt
  • gosthash94cp
  • cmac64
  • block16-refactor
  • siv-mode
  • cmac-layout
  • delete-des-compat
  • delete-rsa_blind
  • aes-struct-layout
  • release-3.4-fixes
  • struct-layout
  • attribute-deprecated
  • rename-data-symbols
  • nettle_3.5.1_release_20190627
  • nettle_3.5_release_20190626
  • nettle_3.5rc1
  • nettle_3.4.1_release_20181204
  • nettle_3.4.1rc1
  • nettle_3.4_release_20171119
  • nettle_3.4rc2
  • nettle_3.4rc1
  • nettle_3.3_release_20161001
  • nettle_3.2_release_20160128
  • nettle_3.1_release_20150407
  • nettle_3.1rc3
  • nettle_3.1rc2
  • nettle_3.1rc1
  • nettle_3.0_release_20140607
  • nettle_2.7.1_release_20130528
  • nettle_2.7_release_20130424
  • nettle_2.6_release_20130116
  • nettle_2.5_release_20120707
40 results

ccm-aes192.c

Blame
  • Forked from Nettle / nettle
    Source project has a limited visibility.
    rsa.c 3.54 KiB
    /* rsa.c
     *
     * The RSA publickey algorithm.
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2001 Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
     * The nettle library is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    #if HAVE_CONFIG_H
    #include "config.h"
    #endif
    
    #if HAVE_LIBGMP
    
    #include "rsa.h"
    
    #include "bignum.h"
    
    /* FIXME: Perhaps we should split this into several functions, so that
     * one can link in the signature functions without also getting the
     * verify functions. */
    
    int
    rsa_prepare_public_key(struct rsa_public_key *key)
    {
      unsigned size = (mpz_sizeinbase(key->n, 2) + 7) / 8;
    
      /* For PKCS#1 to make sense, the size of the modulo, in octets, must
       * be at least 11 + the length of the DER-encoded Digest Info.
       *
       * And a DigestInfo is 34 octets for md5, and 35 octets for sha1.
       * 46 octets is 368 bits. */
      
      if (size < 46)
        {
          /* Make sure the signing and verification functions doesn't
           * try to use this key. */
          key->size = 0;
    
          return 0;
        }
      else
        {
          key->size = size;
          return 1;
        }
    }
    
    int
    rsa_prepare_private_key(struct rsa_private_key *key)
    {
      return rsa_prepare_public_key(&key->pub);
    }
    
    #ifndef RSA_CRT
    #define RSA_CRT 1
    #endif
    
    /* Computing an rsa root.
     *
     * NOTE: We don't really need n not e, so we could drop the public
     * key info from struct rsa_private_key. */
    
    void
    rsa_compute_root(struct rsa_private_key *key, mpz_t x, const mpz_t m)
    {
    #if RSA_CRT
      {
        mpz_t xp; /* modulo p */
        mpz_t xq; /* modulo q */
    
        mpz_init(xp); mpz_init(xq);    
    
        /* Compute xq = m^d % q = (m%q)^b % q */
        mpz_fdiv_r(xq, m, key->q);
        mpz_powm(xq, xq, key->b, key->q);
    
        /* Compute xp = m^d % p = (m%p)^a % p */
        mpz_fdiv_r(xp, m, key->p);
        mpz_powm(xp, xp, key->a, key->p);
    
        /* Set xp' = (xp - xq) c % p. */
        mpz_sub(xp, xp, xq);
        mpz_mul(xp, xp, key->c);
        mpz_fdiv_r(xp, xp, key->p);
    
        /* Finally, compute x = xq + q xp'
         *
         * To prove that this works, note that
         *
         *   xp  = x + i p,
         *   xq  = x + j q,
         *   c q = 1 + k p
         *
         * for some integers i, j and k. Now, for some integer l,
         *
         *   xp' = (xp - xq) c + l p
         *       = (x + i p - (x + j q)) c + l p
         *       = (i p - j q) c + l p
         *       = (i c + l) p - j (c q)
         *       = (i c + l) p - j (1 + kp)
         *       = (i c + l - j k) p - j
         *
         * which shows that xp' = -j (mod p). We get
         *
         *   xq + q xp' = x + j q + (i c + l - j k) p q - j q
         *              = x + (i c + l - j k) p q
         *
         * so that
         *
         *   xq + q xp' = x (mod pq)
         *
         * We also get 0 <= xq + q xp' < p q, because
         *
         *   0 <= xq < q and 0 <= xp' < p.
         */
        mpz_mul(x, key->q, xp);
        mpz_add(x, x, xq);
    
        mpz_clear(xp); mpz_clear(xq);
      }  
    #else /* !RSA_CRT */
      mpz_powm(x, m, key->d, key->pub->n);
    #endif /* !RSA_CRT */
    }
    
    #endif /* HAVE_LIBGMP */