Select Git revision
Nikos Mavrogiannopoulos
authored and
Niels Möller
committed
This adds all exported symbols in the map files explicitly under the following rules: - Symbols mentioned in internal headers go in a section which is valid only for testing, and linking with these symbols will break in library updates. - Symbols mentioned in installed headers go in the exported sections and are considered part of the ABI. - All internal symbols move to internal headers. - The _nettle_md5_compress and _nettle_sha1_compress become exported without the _nettle prefix, due to existing usage.
umac128.c 3.40 KiB
/* umac128.c
Copyright (C) 2013 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <string.h>
#include "umac.h"
#include "umac-internal.h"
#include "macros.h"
void
umac128_set_key (struct umac128_ctx *ctx, const uint8_t *key)
{
_umac_set_key (ctx->l1_key, ctx->l2_key, ctx->l3_key1, ctx->l3_key2,
&ctx->pdf_key, key, 4);
/* Clear nonce */
memset (ctx->nonce, 0, sizeof(ctx->nonce));
ctx->nonce_length = sizeof(ctx->nonce);
/* Initialize buffer */
ctx->count = ctx->index = 0;
}
void
umac128_set_nonce (struct umac128_ctx *ctx,
size_t nonce_length, const uint8_t *nonce)
{
assert (nonce_length > 0);
assert (nonce_length <= AES_BLOCK_SIZE);
memcpy (ctx->nonce, nonce, nonce_length);
memset (ctx->nonce + nonce_length, 0, AES_BLOCK_SIZE - nonce_length);
ctx->nonce_length = nonce_length;
}
#define UMAC128_BLOCK(ctx, block) do { \
uint64_t __umac128_y[4]; \
_umac_nh_n (__umac128_y, 4, ctx->l1_key, UMAC_BLOCK_SIZE, block); \
__umac128_y[0] += 8*UMAC_BLOCK_SIZE; \
__umac128_y[1] += 8*UMAC_BLOCK_SIZE; \
__umac128_y[2] += 8*UMAC_BLOCK_SIZE; \
__umac128_y[3] += 8*UMAC_BLOCK_SIZE; \
_umac_l2 (ctx->l2_key, ctx->l2_state, 4, ctx->count++, __umac128_y); \
} while (0)
void
umac128_update (struct umac128_ctx *ctx,
size_t length, const uint8_t *data)
{
MD_UPDATE (ctx, length, data, UMAC128_BLOCK, (void)0);
}
void
umac128_digest (struct umac128_ctx *ctx,
size_t length, uint8_t *digest)
{
uint32_t tag[4];
unsigned i;
assert (length > 0);
assert (length <= 16);
if (ctx->index > 0 || ctx->count == 0)
{
/* Zero pad to multiple of 32 */
uint64_t y[4];
unsigned pad = (ctx->index > 0) ? 31 & - ctx->index : 32;
memset (ctx->block + ctx->index, 0, pad);
_umac_nh_n (y, 4, ctx->l1_key, ctx->index + pad, ctx->block);
y[0] += 8 * ctx->index;
y[1] += 8 * ctx->index;
y[2] += 8 * ctx->index;
y[3] += 8 * ctx->index;
_umac_l2 (ctx->l2_key, ctx->l2_state, 4, ctx->count++, y);
}
assert (ctx->count > 0);
aes128_encrypt (&ctx->pdf_key, AES_BLOCK_SIZE,
(uint8_t *) tag, ctx->nonce);
INCREMENT (ctx->nonce_length, ctx->nonce);
_umac_l2_final (ctx->l2_key, ctx->l2_state, 4, ctx->count);
for (i = 0; i < 4; i++)
tag[i] ^= ctx->l3_key2[i] ^ _umac_l3 (ctx->l3_key1 + 8*i,
ctx->l2_state + 2*i);
memcpy (digest, tag, length);
/* Reinitialize */
ctx->count = ctx->index = 0;
}