Select Git revision
Forked from
Nettle / nettle
Source project has a limited visibility.
-
Niels Möller authored
Rev: src/nettle/aes.c:1.3 Rev: src/nettle/aes.h:1.3 Rev: src/nettle/arcfour.c:1.2 Rev: src/nettle/arcfour.h:1.2 Rev: src/nettle/blowfish.h:1.5 Rev: src/nettle/cast128.c:1.2 Rev: src/nettle/cast128.h:1.2 Rev: src/nettle/des.c:1.3 Rev: src/nettle/des.h:1.3 Rev: src/nettle/macros.h:1.3 Rev: src/nettle/md5.c:1.2 Rev: src/nettle/md5.h:1.2 Rev: src/nettle/serpent.h:1.4 Rev: src/nettle/sha1.c:1.3 Rev: src/nettle/sha1.h:1.2 Rev: src/nettle/twofish.c:1.3 Rev: src/nettle/twofish.h:1.3
Niels Möller authoredRev: src/nettle/aes.c:1.3 Rev: src/nettle/aes.h:1.3 Rev: src/nettle/arcfour.c:1.2 Rev: src/nettle/arcfour.h:1.2 Rev: src/nettle/blowfish.h:1.5 Rev: src/nettle/cast128.c:1.2 Rev: src/nettle/cast128.h:1.2 Rev: src/nettle/des.c:1.3 Rev: src/nettle/des.h:1.3 Rev: src/nettle/macros.h:1.3 Rev: src/nettle/md5.c:1.2 Rev: src/nettle/md5.h:1.2 Rev: src/nettle/serpent.h:1.4 Rev: src/nettle/sha1.c:1.3 Rev: src/nettle/sha1.h:1.2 Rev: src/nettle/twofish.c:1.3 Rev: src/nettle/twofish.h:1.3
array.c 72.00 KiB
/*
|| This file is part of Pike. For copyright information see COPYRIGHT.
|| Pike is distributed under GPL, LGPL and MPL. See the file COPYING
|| for more information.
*/
#include "global.h"
#include "svalue.h"
#include "array.h"
#include "object.h"
#include "las.h"
#include "stralloc.h"
#include "interpret.h"
#include "opcodes.h"
#include "pike_error.h"
#include "pike_types.h"
#include "fsort.h"
#include "builtin_functions.h"
#include "pike_memory.h"
#include "gc.h"
#include "main.h"
#include "pike_security.h"
#include "stuff.h"
#include "bignum.h"
#include "cyclic.h"
#include "multiset.h"
#include "mapping.h"
/** The empty array. */
PMOD_EXPORT struct array empty_array=
{
PIKE_CONSTANT_MEMOBJ_INIT(1, PIKE_T_ARRAY), /* Never free */
&weak_empty_array, /* Next */
0, /* previous */
0, /* Size = 0 */
0, /* malloced Size = 0 */
0, /* no types */
0, /* no flags */
empty_array.real_item, /* Initialize the item pointer. */
{SVALUE_INIT_FREE},
};
/** The empty weak array. */
PMOD_EXPORT struct array weak_empty_array=
{
PIKE_CONSTANT_MEMOBJ_INIT(1, PIKE_T_ARRAY),
0, &empty_array, 0, 0, 0, ARRAY_WEAK_FLAG,
weak_empty_array.real_item,
{SVALUE_INIT_FREE},
};
struct array *first_array = &empty_array;
struct array *gc_internal_array = 0;
static struct array *gc_mark_array_pos;
#ifdef TRACE_UNFINISHED_TYPE_FIELDS
PMOD_EXPORT int accept_unfinished_type_fields = 0;
PMOD_EXPORT void dont_accept_unfinished_type_fields (void *orig)
{
accept_unfinished_type_fields = (int) orig;
}
#endif
/**
* Allocate an array. This might be changed in the future to allocate
* linked lists or something. The new array has zero references.
*
* When building arrays, it is recommended that you push the values on
* the stack and call aggregate_array or f_aggregate instead of
* allocating and filling in the values 'by hand'.
*
* @param size The size of the new array, in elements.
* @param extra_space The number of extra elements space
* should be reserved for.
* @return A pointer to the allocated array struct.
*/
PMOD_EXPORT struct array *real_allocate_array(ptrdiff_t size,
ptrdiff_t extra_space)
{
struct array *v;
if(size+extra_space == 0)
{
add_ref(&empty_array);
return &empty_array;
}
/* Limits size to (1<<29)-4 */
if( (size_t)(size+extra_space-1) >
(LONG_MAX-sizeof(struct array))/sizeof(struct svalue) )
Pike_error("Too large array (size %ld exceeds %ld).\n",
(long)(size+extra_space-1),
(long)((LONG_MAX-sizeof(struct array))/sizeof(struct svalue)) );
v=(struct array *)malloc(sizeof(struct array)+
(size+extra_space-1)*sizeof(struct svalue));
if(!v)
Pike_error(msg_out_of_mem_2, sizeof(struct array)+
(size+extra_space-1)*sizeof(struct svalue));
GC_ALLOC(v);
if (size+extra_space)
/* for now, we don't know what will go in here */
v->type_field = BIT_MIXED | BIT_UNFINISHED;
else
v->type_field = 0;
v->flags=0;
v->malloced_size = DO_NOT_WARN((INT32)(size + extra_space));
v->item=v->real_item;
v->size = DO_NOT_WARN((INT32)size);
INIT_PIKE_MEMOBJ(v, T_ARRAY);
DOUBLELINK (first_array, v);
{
struct svalue *item = ITEM(v);
struct svalue *item_end = item + v->size;
while (item < item_end)
*item++ = svalue_int_zero;
}
return v;
}
/**
* Free an array without freeing the values inside it.
* Any values inside of the array will be kept.
* @param v The array to be freed.
*/
static void array_free_no_free(struct array *v)
{
DOUBLEUNLINK (first_array, v);
free((char *)v);
GC_FREE(v);
}
/**
* Free an array. Call this when the array has zero references.
* @param v The array to free.
*/
PMOD_EXPORT void really_free_array(struct array *v)
{
#ifdef PIKE_DEBUG
if(v == & empty_array || v == &weak_empty_array)
Pike_fatal("Tried to free some *_empty_array.\n");
if (v->refs) {
#ifdef DEBUG_MALLOC
describe_something(v, T_ARRAY, 0,2,0, NULL);
#endif
Pike_fatal("Freeing array with %d refs.\n", v->refs);
}
#endif
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(v);
#endif
add_ref(v);
EXIT_PIKE_MEMOBJ(v);
free_svalues(ITEM(v), v->size, v->type_field);
sub_ref(v);
array_free_no_free(v);
}
/**
* Decrement the references (and free if unused) an array if it is not null.
*/
PMOD_EXPORT void do_free_array(struct array *a)
{
if (a)
free_array(a);
}
/**
* Set the flags on an array. If the array is empty then only the
* weak flag is significant.
*/
PMOD_EXPORT struct array *array_set_flags(struct array *a, int flags)
{
if (a->size)
a->flags = flags;
else {
free_array(a);
if (flags & ARRAY_WEAK_FLAG)
add_ref(a = &weak_empty_array);
else
add_ref(a = &empty_array);
}
return a;
}
/**
* Extract an svalue from an array. This function frees the contents of
* of the svalue 's' and replaces it with a copy of the
* contents from index 'index' in the array 'v'.
*
* @param index The index of the array to be extracted.
* @param s The recipient of the extracted array element.
* @param v The array to extract the element from.
*
* This function is similar to
* assign_svalue(s, v->item + n);
* except that it adds debug and safety measures. Usually, this function
* is not needed.
*
* @note If n is out of bounds, Pike will dump core. If Pike was compiled
* with DEBUG, a message will be written first stating what the problem was.
*/
PMOD_EXPORT void array_index(struct svalue *s,struct array *v,INT32 index)
{
#ifdef PIKE_DEBUG
if(index<0 || index>=v->size)
Pike_fatal("Illegal index in low level index routine.\n");
#endif
add_ref(v);
assign_svalue(s, ITEM(v) + index);
free_array(v);
}
/** Is destructive on data if destructive is set and it only has one ref. */
PMOD_EXPORT struct array *array_column (struct array *data, struct svalue *index,
int destructive)
{
int e;
struct array *a;
TYPE_FIELD types = 0;
DECLARE_CYCLIC();
/* Optimization */
if(data->refs == 1 && destructive)
{
/* An array with one ref cannot possibly be cyclic */
struct svalue sval;
data->type_field = BIT_MIXED | BIT_UNFINISHED;
for(e=0;e<data->size;e++)
{
index_no_free(&sval, ITEM(data)+e, index);
types |= 1 << TYPEOF(sval);
free_svalue(ITEM(data)+e);
move_svalue (ITEM(data) + e, &sval);
}
data->type_field = types;
add_ref (data);
return data;
}
if((a=(struct array *)BEGIN_CYCLIC(data,0)))
{
add_ref(a);
}else{
push_array(a=allocate_array(data->size));
SET_CYCLIC_RET(a);
for(e=0;e<a->size;e++) {
index_no_free(ITEM(a)+e, ITEM(data)+e, index);
types |= 1 << TYPEOF(ITEM(a)[e]);
}
a->type_field = types;
dmalloc_touch_svalue(Pike_sp-1);
Pike_sp--;
}
END_CYCLIC();
return a;
}
PMOD_EXPORT void simple_array_index_no_free(struct svalue *s,
struct array *a,struct svalue *ind)
{
switch(TYPEOF(*ind))
{
case T_INT: {
INT_TYPE p = ind->u.integer;
INT_TYPE i = p < 0 ? p + a->size : p;
if(i<0 || i>=a->size) {
struct svalue tmp;
SET_SVAL(tmp, T_ARRAY, 0, array, a);
if (a->size) {
index_error(0,0,0,&tmp,ind,
"Index %"PRINTPIKEINT"d is out of array range "
"%d..%d.\n", p, -a->size, a->size-1);
} else {
index_error(0,0,0,&tmp,ind,
"Attempt to index the empty array with %"PRINTPIKEINT"d.\n", p);
}
}
array_index_no_free(s,a,i);
break;
}
case T_STRING:
{
SET_SVAL(*s, T_ARRAY, 0, array, array_column(a, ind, 0));
break;
}
default:
{
struct svalue tmp;
SET_SVAL(tmp, T_ARRAY, 0, array, a);
index_error(0,0,0,&tmp,ind,"Array index is neither int nor string.\n");
}
}
}
/**
* Extract an svalue from an array.
*/
PMOD_EXPORT void array_free_index(struct array *v,INT32 index)
{
#ifdef PIKE_DEBUG
if(index<0 || index>=v->size)
Pike_fatal("Illegal index in low level free index routine.\n");
#endif
free_svalue(ITEM(v) + index);
}
/** set an element in an array to a value.
*
* @param a the array whose element is to be set
* @param ind an int or string containing the index to set
* @param s the value to set
*/
PMOD_EXPORT void simple_set_index(struct array *a,struct svalue *ind,struct svalue *s)
{
switch (TYPEOF(*ind)) {
case T_INT: {
INT_TYPE p = ind->u.integer;
INT_TYPE i = p < 0 ? p + a->size : p;
if(i<0 || i>=a->size) {
if (a->size) {
Pike_error("Index %"PRINTPIKEINT"d is out of array range "
"%d..%d.\n", p, -a->size, a->size-1);
} else {
Pike_error("Attempt to index the empty array with %"PRINTPIKEINT"d.\n", p);
}
}
array_set_index(a,i,s);
break;
}
case T_STRING:
{
INT32 i, n;
check_stack(2);
mark_free_svalue (Pike_sp++);
push_svalue(ind);
for (i = 0, n = a->size; i < n; i++) {
assign_svalue(Pike_sp-2, &a->item[i]);
assign_lvalue(Pike_sp-2, s);
}
pop_n_elems(2);
break;
}
default:
{
struct svalue tmp;
SET_SVAL(tmp, T_ARRAY, 0, array, a);
index_error(0,0,0,&tmp,ind,"Array index is neither int nor string.\n");
}
}
}
/**
* Insert an svalue into an array and grow the array if necessary.
*/
PMOD_EXPORT struct array *array_insert(struct array *v,struct svalue *s,INT32 index)
{
#ifdef PIKE_DEBUG
if(index<0 || index>v->size)
Pike_fatal("Illegal index in low level insert routine.\n");
#endif
/* Can we fit it into the existing block? */
if(v->refs<=1 && (v->malloced_size > v->size))
{
if ((v->item != v->real_item) &&
(((index<<1) < v->size) ||
((v->item + v->size) == (v->real_item + v->malloced_size)))) {
MEMMOVE((char *)(ITEM(v)-1),
(char *)(ITEM(v)),
index * sizeof(struct svalue));
v->item--;
} else {
MEMMOVE((char *)(ITEM(v)+index+1),
(char *)(ITEM(v)+index),
(v->size-index) * sizeof(struct svalue));
}
assert_free_svalue (ITEM(v) + index);
v->size++;
}else{
struct array *ret;
ret = array_set_flags(allocate_array_no_init(v->size+1, v->size + 1),
v->flags);
ret->type_field = v->type_field;
MEMCPY(ITEM(ret), ITEM(v), sizeof(struct svalue) * index);
MEMCPY(ITEM(ret)+index+1, ITEM(v)+index,
sizeof(struct svalue) * (v->size-index));
assert_free_svalue (ITEM(ret) + index);
if (v->refs == 1) {
/* Optimization: Steal the references. */
v->size = 0;
} else if (v->type_field & BIT_REF_TYPES) {
/* Adjust the references. */
int e = v->size;
struct svalue *s = ITEM(ret);
while (e--) {
if (TYPEOF(*s) <= MAX_REF_TYPE) add_ref(s->u.dummy);
s++;
}
}
free_array(v);
v=ret;
}
array_set_index_no_free (v,index,s);
return v;
}
/*
* lval += ({ @args });
*
* Stack is lvalue followed by arguments.
*/
void o_append_array(INT32 args)
{
struct svalue *lval = Pike_sp - args;
struct svalue *val = lval + 2;
#ifdef PIKE_DEBUG
if (args < 3) {
Pike_fatal("Too few arguments to o_append_array(): %d\n", args);
}
#endif
args -= 3;
/* Note: val should always be a zero here! */
lvalue_to_svalue_no_free(val, lval);
if (TYPEOF(*val) == T_ARRAY) {
struct svalue tmp;
struct array *v = val->u.array;
/* This is so that we can minimize the number of references
* to the array, and be able to use destructive operations.
* It's done by freeing the old reference to foo after it has been
* pushed on the stack. That way foo can have only 1 reference if we
* are lucky, and then the low array manipulation routines can
* be destructive if they like.
*/
SET_SVAL(tmp, PIKE_T_INT, NUMBER_NUMBER, integer, 0);
assign_lvalue(lval, &tmp);
if (args == 1) {
val->u.array = array_insert(v, Pike_sp - 1, v->size);
pop_stack();
} else if (!args) {
/* FIXME: Weak? */
if ((v->refs > 1) && (v->size)) {
val->u.array = copy_array(v);
free_array(v);
}
} else {
int i;
for (i = 0; i < args; i++) {
v = array_insert(v, val + 1 + i, v->size);
}
val->u.array = v;
pop_n_elems(args);
}
assign_lvalue(lval, val);
} else {
int i;
struct object *o;
struct program *p;
/* Fall back to aggregate(). */
f_aggregate(args);
if ((TYPEOF(*val) == T_OBJECT) &&
/* One ref in the lvalue, and one on the stack. */
((o = val->u.object)->refs <= 2) &&
(p = o->prog) &&
(i = FIND_LFUN(p->inherits[SUBTYPEOF(Pike_sp[-2])].prog,
LFUN_ADD_EQ)) != -1) {
apply_low(o, i + p->inherits[SUBTYPEOF(Pike_sp[-2])].identifier_level, 1);
/* NB: The lvalue already contains the object, so
* no need to reassign it.
*/
pop_stack();
} else {
f_add(2);
assign_lvalue(lval, val);
}
}
stack_pop_2_elems_keep_top();
}
/**
* Shrink an array destructively
*/
PMOD_EXPORT struct array *array_shrink(struct array *v, ptrdiff_t size)
{
struct array *a;
#ifdef PIKE_DEBUG
if(v->refs>2) /* Odd, but has to be two */
Pike_fatal("Array shrink on array with many references.\n");
if(size > v->size)
Pike_fatal("Illegal argument to array_shrink.\n");
#endif
/* Ensure that one of the empty arrays are returned if size is zero. */
if( !size )
{
struct array *e = (v->flags & ARRAY_WEAK_FLAG ?
&weak_empty_array : &empty_array);
if (e != v) {
free_array (v);
add_ref (e);
}
return e;
}
if (size == v->size) return v;
/* Free items outside the new array. */
free_svalues(ITEM(v) + size, v->size - size, v->type_field);
v->size=size;
if(size*4 < v->malloced_size + 4) /* Should we realloc it? */
{
a = array_set_flags(allocate_array_no_init(size, 0), v->flags);
if (a->size) {
a->type_field = v->type_field;
}
MEMCPY(ITEM(a), ITEM(v), size*sizeof(struct svalue));
v->size=0;
free_array(v);
return a;
}else{
return v;
}
}
/**
* Resize an array destructively, with the exception that a may be one
* of the static empty arrays.
*/
PMOD_EXPORT struct array *resize_array(struct array *a, INT32 size)
{
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(a);
#endif
/* Ensure that one of the empty arrays are returned if size is zero. */
if (!size && a->malloced_size) return array_shrink (a, size);
if(a->size == size) return a;
if(size > a->size)
{
/* We should grow the array */
if((a->malloced_size >= size) &&
((a->item + size) <= (a->real_item + a->malloced_size)))
{
for(;a->size < size; a->size++)
{
SET_SVAL(ITEM(a)[a->size], T_INT, NUMBER_NUMBER, integer, 0);
}
a->type_field |= BIT_INT;
return a;
} else {
struct array *ret;
ret = array_set_flags(low_allocate_array(size, size + 1), a->flags);
MEMCPY(ITEM(ret), ITEM(a), sizeof(struct svalue)*a->size);
ret->type_field = DO_NOT_WARN((TYPE_FIELD)(a->type_field | BIT_INT));
a->size=0;
free_array(a);
return ret;
}
} else {
return array_shrink(a, size);
}
}
/**
* Remove an index from an array and shrink the array destructively.
* Because this function is destructive, and might free the region for 'v',
* do not use this function on arrays that might have been sent to a
* Pike function.
*
* @param v The array to operate on.
* @param index The index of the element to remove
* @return a new array with the contents of the input minus the removed index.
*/
PMOD_EXPORT struct array *array_remove(struct array *v,INT32 index)
{
struct array *a;
#ifdef PIKE_DEBUG
if(index<0 || index >= v->size)
Pike_fatal("Illegal argument to array_remove.\n");
#endif
array_free_index(v, index);
if (v->size == 1) {
v->size = 0;
/* NOTE: The following uses the fact that array_set_flags()
* will reallocate the array if it has zero size!
*/
return array_set_flags(v, v->flags);
} else if(v->size*4 + 4 < v->malloced_size ) /* Should we realloc it? */
{
a = array_set_flags(allocate_array_no_init(v->size-1, 0), v->flags);
a->type_field = v->type_field;
if(index>0)
MEMCPY(ITEM(a), ITEM(v), index*sizeof(struct svalue));
if(v->size-index>1)
MEMCPY(ITEM(a)+index,
ITEM(v)+index+1,
(v->size-index-1)*sizeof(struct svalue));
v->size=0;
free_array(v);
return a;
} else {
if(v->size-index>1)
{
MEMMOVE((char *)(ITEM(v)+index),
(char *)(ITEM(v)+index+1),
(v->size-index-1)*sizeof(struct svalue));
}
v->size--;
return v;
}
}
/**
* Search for in svalue in an array.
* @param v the array to search
* @param s the value to search for
* @param start the index to start search at
* @return the index if found, -1 otherwise
*/
PMOD_EXPORT ptrdiff_t array_search(struct array *v, struct svalue *s,
ptrdiff_t start)
{
ptrdiff_t e;
#ifdef PIKE_DEBUG
if(start<0)
Pike_fatal("Start of find_index is less than zero.\n");
#endif
check_destructed(s);
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(v);
#endif
/* Why search for something that is not there?
* however, we must explicitly check for searches
* for destructed objects/functions
*/
if((v->type_field & (1 << TYPEOF(*s))) ||
(UNSAFE_IS_ZERO(s) && (v->type_field & (BIT_FUNCTION|BIT_OBJECT))) ||
( (v->type_field | (1<<TYPEOF(*s))) & BIT_OBJECT )) /* for overloading */
{
if(start)
{
for(e=start;e<v->size;e++)
if(is_eq(ITEM(v)+e,s)) return e;
}else{
TYPE_FIELD t=0;
for(e=0;e<v->size;e++)
{
if(is_eq(ITEM(v)+e,s)) return e;
t |= 1<<TYPEOF(ITEM(v)[e]);
}
v->type_field=t;
}
}
return -1;
}
/**
* Slice a piece of an array (conditionally destructively)
* @param v the array to slice
* @param start the beginning element to be included
* @param end the element beyond the end of the slice
* @return an array consisting of v[start..end-1]
*/
PMOD_EXPORT struct array *slice_array(struct array *v, ptrdiff_t start,
ptrdiff_t end)
{
struct array *a;
#ifdef PIKE_DEBUG
if(start > end || end>v->size || start<0)
Pike_fatal("Illegal arguments to slice_array()\n");
if(d_flag > 1) array_check_type_field(v);
#endif
if(v->refs==1) /* Can we use the same array? */
{
if((end-start)*4 > v->malloced_size) /* don't waste too much memory */
{
add_ref(v);
free_svalues(ITEM(v) + end, v->size - end, v->type_field);
free_svalues(ITEM(v), start, v->type_field);
v->item+=start;
v->size=end-start;
#ifdef PIKE_DEBUG
if(d_flag>1)
check_array(v);
#endif
return v;
}
}
a=allocate_array_no_init(end-start,0);
if (end-start) {
a->type_field = v->type_field;
assign_svalues_no_free(ITEM(a), ITEM(v)+start, end-start, v->type_field);
}
return a;
}
/**
* Slice a piece of an array (nondestructively).
* @return an array consisting of v[start..end-1]
*/
PMOD_EXPORT struct array *friendly_slice_array(struct array *v,
ptrdiff_t start,
ptrdiff_t end)
{
struct array *a;
#ifdef PIKE_DEBUG
if(start > end || end>v->size || start<0)
Pike_fatal("Illegal arguments to slice_array()\n");
if(d_flag > 1) array_check_type_field(v);
#endif
a=allocate_array_no_init(end-start,0);
a->type_field = v->type_field;
assign_svalues_no_free(ITEM(a), ITEM(v)+start, end-start, v->type_field);
return a;
}
/**
* Copy an array.
* @param v the array to be copied.
* @returns the copy of the input array.
*/
PMOD_EXPORT struct array *copy_array(struct array *v)
{
struct array *a;
if (!v->size) {
/* Empty array. */
add_ref(&empty_array);
return &empty_array;
}
a=allocate_array_no_init(v->size, 0);
a->type_field = v->type_field;
assign_svalues_no_free(ITEM(a), ITEM(v), v->size, v->type_field);
return a;
}
/**
* Clean an array from destructed objects.
*/
PMOD_EXPORT void check_array_for_destruct(struct array *v)
{
int e;
INT16 types;
types = 0;
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(v);
#endif
if(v->type_field & (BIT_OBJECT | BIT_FUNCTION))
{
for(e=0; e<v->size; e++)
{
if((TYPEOF(ITEM(v)[e]) == T_OBJECT ||
(TYPEOF(ITEM(v)[e]) == T_FUNCTION &&
SUBTYPEOF(ITEM(v)[e]) != FUNCTION_BUILTIN)) &&
(!ITEM(v)[e].u.object->prog))
{
free_svalue(ITEM(v)+e);
SET_SVAL(ITEM(v)[e], T_INT, NUMBER_DESTRUCTED, integer, 0);
types |= BIT_INT;
}else{
types |= 1<<TYPEOF(ITEM(v)[e]);
}
}
v->type_field = types;
}
}
/**
* This function finds the index of any destructed object in a set.
* It could be optimized to search out the object part with a binary
* search lookup if the array is mixed.
*/
PMOD_EXPORT INT32 array_find_destructed_object(struct array *v)
{
INT32 e;
TYPE_FIELD types;
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(v);
#endif
if(v->type_field & (BIT_OBJECT | BIT_FUNCTION))
{
types=0;
for(e=0; e<v->size; e++)
{
if((TYPEOF(ITEM(v)[e]) == T_OBJECT ||
(TYPEOF(ITEM(v)[e]) == T_FUNCTION &&
SUBTYPEOF(ITEM(v)[e]) != FUNCTION_BUILTIN)) &&
(!ITEM(v)[e].u.object->prog))
return e;
types |= 1<<TYPEOF(ITEM(v)[e]);
}
v->type_field = types;
}
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(v);
#endif
return -1;
}
static int internal_cmpfun(INT32 *a,
INT32 *b,
cmpfun current_cmpfun,
struct svalue *current_array_p)
{
int res = current_cmpfun(current_array_p + *a, current_array_p + *b);
/* If the comparison considers the elements equal we compare their
* positions. Thus we get a stable sort function. */
return res ? res : *a - *b;
}
#define CMP(X,Y) internal_cmpfun((X),(Y),current_cmpfun, current_array_p)
#define TYPE INT32
#define ID get_order_fsort
#define EXTRA_ARGS ,cmpfun current_cmpfun, struct svalue *current_array_p
#define XARGS ,current_cmpfun, current_array_p
#include "fsort_template.h"
#undef CMP
#undef TYPE
#undef ID
#undef EXTRA_ARGS
#undef XARGS
/* The sort is stable. */
INT32 *get_order(struct array *v, cmpfun fun)
{
INT32 e, *current_order;
ONERROR tmp;
if(!v->size) return 0;
/* Overlow safe: ((1<<29)-4)*4 < ULONG_MAX */
current_order=(INT32 *)xalloc(v->size * sizeof(INT32));
SET_ONERROR(tmp, free, current_order);
for(e=0; e<v->size; e++) current_order[e]=e;
get_order_fsort(current_order,
current_order+v->size-1,
fun,
ITEM(v));
UNSET_ONERROR(tmp);
return current_order;
}
/* Returns CMPFUN_UNORDERED if no relation is established through lfun
* calls, or -CMPFUN_UNORDERED if no order defining lfuns (i.e. `< or
* `>) were found. */
static int lfun_cmp (const struct svalue *a, const struct svalue *b)
{
struct program *p;
int default_res = -CMPFUN_UNORDERED, fun;
if (TYPEOF(*a) == T_OBJECT && (p = a->u.object->prog)) {
if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*a)].prog, LFUN_LT)) != -1) {
push_svalue(b);
apply_low(a->u.object,
fun + p->inherits[SUBTYPEOF(*a)].identifier_level, 1);
if(!UNSAFE_IS_ZERO(Pike_sp-1))
{
pop_stack();
return -1;
}
pop_stack();
default_res = CMPFUN_UNORDERED;
}
if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*a)].prog, LFUN_GT)) != -1) {
push_svalue(b);
apply_low(a->u.object,
fun + p->inherits[SUBTYPEOF(*a)].identifier_level, 1);
if(!UNSAFE_IS_ZERO(Pike_sp-1))
{
pop_stack();
return 1;
}
pop_stack();
default_res = CMPFUN_UNORDERED;
}
/* NB: It's not a good idea to use LFUN_EQ here if
* there is neither LFUN_LT nor LFUN_GT, since
* the sorting order may get confused, which
* will cause merge_array_with_order() to fail.
*/
if ((default_res == CMPFUN_UNORDERED) &&
(fun = FIND_LFUN(p->inherits[SUBTYPEOF(*a)].prog, LFUN_EQ)) != -1) {
push_svalue(b);
apply_low(a->u.object,
fun + p->inherits[SUBTYPEOF(*a)].identifier_level, 1);
if (!UNSAFE_IS_ZERO(Pike_sp-1)) {
pop_stack();
return 0;
}
pop_stack();
}
}
if(TYPEOF(*b) == T_OBJECT && (p = b->u.object->prog)) {
if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*b)].prog, LFUN_LT)) != -1) {
push_svalue(a);
apply_low(b->u.object,
fun + p->inherits[SUBTYPEOF(*b)].identifier_level, 1);
if(!UNSAFE_IS_ZERO(Pike_sp-1))
{
pop_stack();
return 1;
}
pop_stack();
default_res = CMPFUN_UNORDERED;
}
if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*b)].prog, LFUN_GT)) != -1) {
push_svalue(a);
apply_low(b->u.object,
fun + p->inherits[SUBTYPEOF(*b)].identifier_level, 1);
if(!UNSAFE_IS_ZERO(Pike_sp-1))
{
pop_stack();
return -1;
}
pop_stack();
default_res = CMPFUN_UNORDERED;
}
/* NB: It's not a good idea to use LFUN_EQ here if
* there is neither LFUN_LT nor LFUN_GT, since
* the sorting order may get confused, which
* will cause merge_array_with_order() to fail.
*/
if ((default_res == CMPFUN_UNORDERED) &&
(fun = FIND_LFUN(p->inherits[SUBTYPEOF(*b)].prog, LFUN_EQ)) != -1) {
push_svalue(a);
apply_low(b->u.object,
fun + p->inherits[SUBTYPEOF(*b)].identifier_level, 1);
if (!UNSAFE_IS_ZERO(Pike_sp-1)) {
pop_stack();
return 0;
}
pop_stack();
}
}
return default_res;
}
static int obj_or_func_cmp (const struct svalue *a, const struct svalue *b)
/* Call with either two T_OBJECT or two T_FUNCTION. */
{
int a_subtype, b_subtype, res;
struct svalue tmp_a, tmp_b;
assert ((TYPEOF(*a) == T_OBJECT && TYPEOF(*b) == T_OBJECT) ||
(TYPEOF(*a) == T_FUNCTION && TYPEOF(*b) == T_FUNCTION));
if (a->u.object == b->u.object)
return SUBTYPEOF(*a) - SUBTYPEOF(*b);
/* Destructed objects are considered equal to each other, and
* greater than others. That makes them sort close to real zeroes,
* which are sorted after objects without compare functions. */
if (!a->u.object->prog)
return !b->u.object->prog ? 0 : 1;
else if (!b->u.object->prog)
return -1;
if (TYPEOF(*a) == T_FUNCTION) {
/* Sort pike functions before builtins. */
if (SUBTYPEOF(*a) == FUNCTION_BUILTIN) {
if (SUBTYPEOF(*b) == FUNCTION_BUILTIN)
return a->u.efun < b->u.efun ? -1 : (a->u.efun == b->u.efun ? 0 : 1);
else
return 1;
}
else
if (SUBTYPEOF(*b) == FUNCTION_BUILTIN)
return -1;
if (a->u.object->prog != b->u.object->prog)
return a->u.object->prog < b->u.object->prog ? -1 : 1;
if (SUBTYPEOF(*a) != SUBTYPEOF(*b))
return SUBTYPEOF(*a) - SUBTYPEOF(*b);
/* We have the same function but in different objects. Compare the
* objects themselves. */
/* FIXME: Should we try to convert the subtypes to the ones for
* the closest inherits? That'd make some sense if the functions
* are private, but otherwise it's doubtful. */
a_subtype = b_subtype = SUBTYPEOF(*a);
SET_SVAL(tmp_a, T_OBJECT, 0, object, a->u.object);
a = &tmp_a;
SET_SVAL(tmp_b, T_OBJECT, 0, object, b->u.object);
b = &tmp_b;
}
else {
a_subtype = SUBTYPEOF(*a);
b_subtype = SUBTYPEOF(*b);
}
res = lfun_cmp (a, b);
if (res == -CMPFUN_UNORDERED) {
/* If the objects had no inequality comparison lfuns to call, use
* their pointers to get a well defined internal sort order. Let's
* also group objects cloned from the same program. */
if (a->u.object->prog == b->u.object->prog)
return a->u.object < b->u.object ? -1 : 1;
else
return a->u.object->prog < b->u.object->prog ? -1 : 1;
}
else if (!res)
return a_subtype - b_subtype;
return res;
}
int set_svalue_cmpfun(const struct svalue *a, const struct svalue *b)
{
int typediff = TYPEOF(*a) - TYPEOF(*b);
if (typediff) {
if (TYPEOF(*a) == T_OBJECT || TYPEOF(*b) == T_OBJECT) {
int res = lfun_cmp (a, b);
if (res != -CMPFUN_UNORDERED) return res;
}
return typediff;
}
switch(TYPEOF(*a))
{
case T_FLOAT:
if(a->u.float_number < b->u.float_number) return -1;
if(a->u.float_number > b->u.float_number) return 1;
return 0;
case T_INT:
if(a->u.integer < b->u.integer) return -1;
if(a->u.integer > b->u.integer) return 1;
return 0;
case T_OBJECT:
case T_FUNCTION:
return obj_or_func_cmp (a, b);
default:
if(a->u.refs < b->u.refs) return -1;
if(a->u.refs > b->u.refs) return 1;
return 0;
}
/* NOT REACHED */
}
static int switch_svalue_cmpfun(const struct svalue *a, const struct svalue *b)
{
int typediff = TYPEOF(*a) - TYPEOF(*b);
if (typediff)
return typediff;
switch(TYPEOF(*a))
{
case T_INT:
if(a->u.integer < b->u.integer) return -1;
if(a->u.integer > b->u.integer) return 1;
return 0;
case T_FLOAT:
if(a->u.float_number < b->u.float_number) return -1;
if(a->u.float_number > b->u.float_number) return 1;
return 0;
case T_STRING:
return DO_NOT_WARN((int)my_quick_strcmp(a->u.string, b->u.string));
case T_OBJECT:
case T_FUNCTION:
return obj_or_func_cmp (a, b);
default:
if(a->u.refs < b->u.refs) return -1;
if(a->u.refs > b->u.refs) return 1;
return 0;
}
/* NOT REACHED */
}
int alpha_svalue_cmpfun(const struct svalue *a, const struct svalue *b)
{
int typediff = TYPEOF(*a) - TYPEOF(*b);
if (typediff) {
if (TYPEOF(*a) == T_OBJECT || TYPEOF(*b) == T_OBJECT) {
int res = lfun_cmp (a, b);
if (res != -CMPFUN_UNORDERED) return res;
}
return typediff;
}
switch(TYPEOF(*a))
{
case T_INT:
if(a->u.integer < b->u.integer) return -1;
if(a->u.integer > b->u.integer) return 1;
return 0;
case T_FLOAT:
if(a->u.float_number < b->u.float_number) return -1;
if(a->u.float_number > b->u.float_number) return 1;
return 0;
case T_STRING:
return DO_NOT_WARN((int)my_quick_strcmp(a->u.string, b->u.string));
case T_ARRAY:
if(a==b) return 0;
if (!a->u.array->size)
if (!b->u.array->size) /* There are several different empty arrays. */
return 0;
else
return -1;
else
if (!b->u.array->size)
return 1;
return alpha_svalue_cmpfun(ITEM(a->u.array), ITEM(b->u.array));
case T_MULTISET:
if (a == b) return 0;
{
ptrdiff_t a_pos = multiset_first (a->u.multiset);
ptrdiff_t b_pos = multiset_first (b->u.multiset);
int res;
struct svalue ind_a, ind_b;
if (a_pos < 0)
if (b_pos < 0)
return 0;
else
return -1;
else
if (b_pos < 0)
return 1;
res = alpha_svalue_cmpfun (
use_multiset_index (a->u.multiset, a_pos, ind_a),
use_multiset_index (b->u.multiset, b_pos, ind_b));
sub_msnode_ref (a->u.multiset);
sub_msnode_ref (b->u.multiset);
return res;
}
case T_OBJECT:
case T_FUNCTION:
return obj_or_func_cmp (a, b);
default:
if(a->u.ptr < b->u.ptr) return -1;
if(a->u.ptr > b->u.ptr) return 1;
return 0;
}
/* NOT REACHED */
}
#define CMP(X,Y) alpha_svalue_cmpfun(X,Y)
#define TYPE struct svalue
#define ID low_sort_svalues
#include "fsort_template.h"
#undef CMP
#undef TYPE
#undef ID
/* Same, but only integers. */
static int alpha_int_svalue_cmpfun(const struct svalue *a, const struct svalue *b)
{
#ifdef PIKE_DEBUG
if ((TYPEOF(*a) != T_INT) || (TYPEOF(*b) != T_INT)) {
Pike_fatal("Invalid elements in supposedly integer array.\n");
}
#endif /* PIKE_DEBUG */
if(a->u.integer < b->u.integer) return -1;
if(a->u.integer > b->u.integer) return 1;
return 0;
}
#define CMP(X,Y) alpha_int_svalue_cmpfun(X,Y)
#define TYPE struct svalue
#define ID low_sort_int_svalues
#include "fsort_template.h"
#undef CMP
#undef TYPE
#undef ID
/** This sort is unstable. */
PMOD_EXPORT void sort_array_destructively(struct array *v)
{
if(!v->size) return;
if (v->type_field == BIT_INT) {
low_sort_int_svalues(ITEM(v), ITEM(v)+v->size-1);
} else {
low_sort_svalues(ITEM(v), ITEM(v)+v->size-1);
}
}
#define SORT_BY_INDEX
#define EXTRA_LOCALS int cmpfun_res;
#define CMP(X,Y) ((cmpfun_res = \
(alpha_svalue_cmpfun(svals + X, svals + Y) & \
~CMPFUN_UNORDERED)) ? \
cmpfun_res : pos[X] - pos[Y])
#define SWAP(X,Y) { \
{struct svalue tmp = svals[X]; svals[X] = svals[Y]; svals[Y] = tmp;} \
{int tmp = pos[X]; pos[X] = pos[Y]; pos[Y] = tmp;} \
}
#define TYPE struct svalue
#define ID low_stable_sort_svalues
#define EXTRA_ARGS , struct svalue *svals, INT32 *pos, int size
#define XARGS , svals, pos, size
#include "fsort_template.h"
#undef SORT_BY_INDEX
#undef EXTRA_LOCALS
#undef CMP
#undef SWAP
#undef TYPE
#undef ID
#undef EXTRA_ARGS
#undef XARGS
/** This sort is stable. The return value is like the one from
* get_alpha_order. */
PMOD_EXPORT INT32 *stable_sort_array_destructively(struct array *v)
{
INT32 *current_order;
ONERROR tmp;
int e;
if(!v->size) return NULL;
/* Overflow safe: ((1<<29)-4)*4 < ULONG_MAX */
current_order=(INT32 *)xalloc(v->size * sizeof(INT32));
SET_ONERROR(tmp, free, current_order);
for(e=0; e<v->size; e++) current_order[e]=e;
low_stable_sort_svalues (0, v->size - 1, ITEM (v), current_order, v->size);
UNSET_ONERROR (tmp);
return current_order;
}
/**
* Return an 'order' suitable for making mappings and multisets.
*/
PMOD_EXPORT INT32 *get_set_order(struct array *a)
{
return get_order(a, set_svalue_cmpfun);
}
/**
* Return an 'order' suitable for switches.
*
* Note: This is used by encode_value_canonic(). It must keep the
* sorting rules for all the types that function allows in multiset
* and mapping indices.
*/
PMOD_EXPORT INT32 *get_switch_order(struct array *a)
{
return get_order(a, switch_svalue_cmpfun);
}
/**
* Return an 'order' suitable for sorting.
*/
PMOD_EXPORT INT32 *get_alpha_order(struct array *a)
{
return get_order(a, alpha_svalue_cmpfun);
}
static INT32 low_lookup(struct array *v,
struct svalue *s,
cmpfun fun)
{
INT32 a,b,c;
int q;
a=0;
b=v->size;
while(b > a)
{
c=(a+b)/2;
q=fun(ITEM(v)+c,s);
if(q < 0)
a=c+1;
else if(q > 0)
b=c;
else
return c;
}
if(a<v->size && fun(ITEM(v)+a,s)<0) a++;
return ~a;
}
INT32 set_lookup(struct array *a, struct svalue *s)
{
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(a);
#endif
/* objects may have `< `> operators, evil stuff! */
if(TYPEOF(*s) != T_OBJECT && !(a->type_field & BIT_OBJECT))
{
/* face it, it's not there */
if( (((2 << TYPEOF(*s)) -1) & a->type_field) == 0)
return -1;
/* face it, it's not there */
if( ((BIT_MIXED << TYPEOF(*s)) & BIT_MIXED & a->type_field) == 0)
return ~a->size;
}
return low_lookup(a,s,set_svalue_cmpfun);
}
INT32 switch_lookup(struct array *a, struct svalue *s)
{
/* face it, it's not there */
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(a);
#endif
/* objects may have `< `> operators, evil stuff! */
if(TYPEOF(*s) != T_OBJECT && !(a->type_field & BIT_OBJECT))
{
if( (((2 << TYPEOF(*s)) -1) & a->type_field) == 0)
return -1;
/* face it, it's not there */
if( ((BIT_MIXED << TYPEOF(*s)) & BIT_MIXED & a->type_field) == 0)
return ~a->size;
}
return low_lookup(a,s,switch_svalue_cmpfun);
}
/**
* Reorganize an array in the order specified by 'order'.
*/
PMOD_EXPORT struct array *order_array(struct array *v, INT32 *order)
{
reorder((char *)ITEM(v),v->size,sizeof(struct svalue),order);
return v;
}
/**
* Copy and reorganize an array.
*/
PMOD_EXPORT struct array *reorder_and_copy_array(struct array *v, INT32 *order)
{
INT32 e;
struct array *ret;
ret=allocate_array_no_init(v->size, 0);
ret->type_field = v->type_field;
for(e=0;e<v->size;e++)
assign_svalue_no_free(ITEM(ret)+e, ITEM(v)+order[e]);
return ret;
}
/* Maybe I should have a 'clean' flag for this computation */
PMOD_EXPORT TYPE_FIELD array_fix_type_field(struct array *v)
{
int e;
TYPE_FIELD t;
if(v->flags & ARRAY_LVALUE)
{
v->type_field=BIT_MIXED|BIT_UNFINISHED;
return BIT_MIXED|BIT_UNFINISHED;
}
t=0;
for(e=0; e<v->size; e++) {
check_svalue (ITEM(v) + e);
t |= 1 << TYPEOF(ITEM(v)[e]);
}
#ifdef PIKE_DEBUG
if(t & ~(v->type_field))
{
describe(v);
Pike_fatal("Type field out of order (old:0x%04x new:0x%04x)!\n",
v->type_field, t);
}
#endif
v->type_field = t;
return t;
}
#ifdef PIKE_DEBUG
/* Maybe I should have a 'clean' flag for this computation */
PMOD_EXPORT void array_check_type_field(struct array *v)
{
int e;
TYPE_FIELD t;
t=0;
if(v->flags & ARRAY_LVALUE)
return;
#ifdef TRACE_UNFINISHED_TYPE_FIELDS
if (v->type_field & BIT_UNFINISHED && !accept_unfinished_type_fields) {
fputs ("Array got an unfinished type field.\n", stderr);
describe_something (v, T_ARRAY, 2, 2, 0, NULL);
}
#endif
for(e=0; e<v->size; e++)
{
if(TYPEOF(ITEM(v)[e]) > MAX_TYPE)
Pike_fatal("Type is out of range.\n");
t |= 1 << TYPEOF(ITEM(v)[e]);
}
if(t & ~(v->type_field))
{
describe(v);
Pike_fatal("Type field out of order!\n");
}
}
#endif /* PIKE_DEBUG */
/**
* Get a pointer to the 'union anything' specified if it is of the specified
* type. The 'union anything' may be changed, but not the type.
*/
PMOD_EXPORT union anything *low_array_get_item_ptr(struct array *a,
INT32 ind,
TYPE_T t)
{
if(TYPEOF(ITEM(a)[ind]) == t) return & (ITEM(a)[ind].u);
return 0;
}
/**
* Get a pointer to the 'union anything' specified if it is of the specified
* type. The 'union anything' may be changed, but not the type.
* The differance between this routine and the one above is that this takes
* the index as an svalue.
*/
PMOD_EXPORT union anything *array_get_item_ptr(struct array *a,
struct svalue *ind,
TYPE_T t)
{
INT_TYPE i, p;
if(TYPEOF(*ind) != T_INT)
Pike_error("Expected integer as array index, got %s.\n",
get_name_of_type (TYPEOF(*ind)));
p = ind->u.integer;
i = p < 0 ? p + a->size : p;
if(i<0 || i>=a->size) {
if (a->size) {
Pike_error("Index %"PRINTPIKEINT"d is out of array range "
"%d..%d.\n", p, -a->size, a->size-1);
} else {
Pike_error("Attempt to index the empty array with %"PRINTPIKEINT"d.\n", p);
}
}
return low_array_get_item_ptr(a,i,t);
}
/**
* Organize an array of INT32 to specify how to zip two arrays together
* to maintain the order.
* The first item in this array is the size of the result
* the rest is n >= 0 for a[ n ]
* or n < 0 for b[ ~n ].
*/
INT32 * merge(struct array *a,struct array *b,INT32 opcode)
{
ONERROR r;
INT32 ap,bp,i,*ret,*ptr;
ap=bp=0;
#ifdef PIKE_DEBUG
if(d_flag > 1)
{
array_check_type_field(a);
array_check_type_field(b);
}
#endif
if(!(a->type_field & b->type_field) &&
!((a->type_field | b->type_field) & BIT_OBJECT))
{
/* do smart optimizations */
switch(opcode)
{
case PIKE_ARRAY_OP_AND:
/* Trivially overflow safe */
ret=(INT32 *)xalloc(sizeof(INT32));
*ret=0;
return ret;
case PIKE_ARRAY_OP_SUB:
/* Overlow safe: ((1<<29)-4+1)*4 < ULONG_MAX */
ptr=ret=(INT32 *)xalloc(sizeof(INT32)*(a->size+1));
*(ptr++)=a->size;
for(i=0;i<a->size;i++) *(ptr++)=i;
return ret;
}
}
/* Note: The following is integer overflow safe as long as
* sizeof(struct svalue) >= 2*sizeof(INT32).
*/
ptr=ret=(INT32 *)xalloc(sizeof(INT32)*(a->size + b->size + 1));
SET_ONERROR(r, free,ret);
ptr++;
while(ap < a->size && bp < b->size)
{
i=set_svalue_cmpfun(ITEM(a)+ap,ITEM(b)+bp);
if(i < 0)
i=opcode >> 8;
else if(i > 0)
i=opcode;
else
i=opcode >> 4;
if(i & PIKE_ARRAY_OP_A) *(ptr++)=ap;
if(i & PIKE_ARRAY_OP_B) *(ptr++)=~bp;
if(i & PIKE_ARRAY_OP_SKIP_A) ap++;
if(i & PIKE_ARRAY_OP_SKIP_B) bp++;
}
if((opcode >> 8) & PIKE_ARRAY_OP_A) while(ap<a->size) *(ptr++)=ap++;
if(opcode & PIKE_ARRAY_OP_B) while(bp<b->size) *(ptr++)=~(bp++);
*ret = DO_NOT_WARN((INT32)(ptr-ret-1));
UNSET_ONERROR(r);
return ret;
}
/**
* This routine merges two arrays in the order specified by 'zipper'
* zipper normally produced by merge() above.
*/
PMOD_EXPORT struct array *array_zip(struct array *a, struct array *b,INT32 *zipper)
{
INT32 size,e;
struct array *ret;
size=zipper[0];
zipper++;
ret=allocate_array_no_init(size,0);
for(e=0; e<size; e++)
{
if(*zipper >= 0)
assign_svalue_no_free(ITEM(ret)+e, ITEM(a)+*zipper);
else
assign_svalue_no_free(ITEM(ret)+e, ITEM(b)+~*zipper);
zipper++;
}
ret->type_field = a->type_field | b->type_field;
return ret;
}
/** Add an arbitrary number of arrays together (destructively).
* @param argp An array of svalues containing the arrays to be concatenated
* Note that the svalues may get modified by this function.
* @param args The number of elements in argp
* @returns The resulting struct array.
*/
PMOD_EXPORT struct array *add_arrays(struct svalue *argp, INT32 args)
{
INT32 e, size;
struct array *v;
struct array *v2 = NULL;
for(size=e=0;e<args;e++)
size+=argp[e].u.array->size;
#if 1
{
INT32 tmp=0; /* Svalues needed so far. */
INT32 tmp2 = 0;
INT32 e2 = -1;
for(e=0;e<args;e++)
{
v=argp[e].u.array;
if(v->refs == 1 && v->malloced_size >= size)
{
if (((v->item - v->real_item) >= tmp) &&
((v->item + size - tmp) <= (v->real_item + v->malloced_size))) {
/* There's enough space before and after. */
debug_malloc_touch(v);
mark_free_svalue(argp + e);
for(tmp=e-1;tmp>=0;tmp--)
{
v2 = argp[tmp].u.array;
debug_malloc_touch(v2);
v->type_field |= v2->type_field;
assign_svalues_no_free(ITEM(v) - v2->size, ITEM(v2),
v2->size, v2->type_field);
v->item -= v2->size;
v->size += v2->size;
}
for(tmp=e+1;tmp<args;tmp++)
{
v2 = argp[tmp].u.array;
debug_malloc_touch(v2);
v->type_field |= v2->type_field;
assign_svalues_no_free(ITEM(v) + v->size, ITEM(v2),
v2->size, v2->type_field);
v->size += v2->size;
}
#ifdef PIKE_DEBUG
if(d_flag>1)
check_array(v);
#endif
return v;
}
if (!v2 || (v->size > v2->size)) {
/* Got a potential candidate.
*
* Optimize for maximum MEMMOVE()
* (ie minimum assign_svalues_no_free()).
*/
tmp2 = tmp;
v2 = v;
e2 = e;
}
}
tmp+=v->size;
}
if (v2) {
debug_malloc_touch(v2);
mark_free_svalue(argp + e2);
MEMMOVE((char *)(v2->real_item + tmp2), (char *)ITEM(v2),
v2->size * sizeof(struct svalue));
v2->item = v2->real_item + tmp2;
for(tmp=e2-1;tmp>=0;tmp--)
{
v = argp[tmp].u.array;
debug_malloc_touch(v);
v2->type_field |= v->type_field;
assign_svalues_no_free(ITEM(v2) - v->size, ITEM(v),
v->size, v->type_field);
v2->item -= v->size;
v2->size += v->size;
}
for(tmp=e2+1;tmp<args;tmp++)
{
v = argp[tmp].u.array;
debug_malloc_touch(v);
v2->type_field |= v->type_field;
assign_svalues_no_free(ITEM(v2) + v2->size, ITEM(v),
v->size, v->type_field);
v2->size += v->size;
}
#ifdef PIKE_DEBUG
if(d_flag>1)
check_array(v2);
#endif
return v2;
}
}
#endif
if(args && (v2 = argp[0].u.array)->refs==1)
{
e = v2->size;
v = resize_array(v2, size);
mark_free_svalue(argp);
size=e;
e=1;
}else{
v=allocate_array_no_init(size, 0);
v->type_field=0;
e=size=0;
}
for(; e<args; e++)
{
v2 = argp[e].u.array;
v->type_field |= v2->type_field;
assign_svalues_no_free(ITEM(v)+size, ITEM(v2), v2->size, v2->type_field);
size += v2->size;
}
return v;
}
PMOD_EXPORT int array_equal_p(struct array *a, struct array *b, struct processing *p)
{
struct processing curr;
INT32 e;
if(a == b) return 1;
if(a->size != b->size) return 0;
if(!a->size) return 1;
#ifdef PIKE_DEBUG
if(d_flag > 1)
{
array_check_type_field(a);
array_check_type_field(b);
}
#endif
/* This could be done much better if I KNEW that
* the type fields didn't contain types that
* really aren't in the array
*/
if(!(a->type_field & b->type_field) &&
!( (a->type_field | b->type_field) & BIT_OBJECT ))
return 0;
curr.pointer_a = a;
curr.pointer_b = b;
curr.next = p;
for( ;p ;p=p->next)
if(p->pointer_a == (void *)a && p->pointer_b == (void *)b)
return 1;
for(e=0; e<a->size; e++)
if(!low_is_equal(ITEM(a)+e, ITEM(b)+e, &curr))
return 0;
return 1;
}
typedef int(*mycmpfun)(INT32*,INT32*,INT32*,INT32*);
#define ID fsort_with_order
#define CMP(X,Y) ((*cmpfun)((X),(Y),oa,ob))
#define EXTRA_ARGS ,mycmpfun cmpfun,INT32 *oa,INT32 *ob
#define XARGS ,cmpfun,oa,ob
#define TYPE INT32
#include "fsort_template.h"
#undef ID
#undef TYPE
#undef XARGS
#undef EXTRA_ARGS
#undef CMP
/**
* This is used to rearrange the zipper so that the order is retained
* as it was before (check merge_array_with_order below).
*/
static int array_merge_fun(INT32 *a, INT32 *b,
INT32 *ordera, INT32 *orderb)
{
if(*a<0)
{
if(*b<0)
{
return orderb[~*a] - orderb[~*b];
}else{
return 1;
}
}else{
if(*b<0)
{
return -1;
}else{
return ordera[*a] - ordera[*b];
}
}
}
/**
* Merge two arrays and retain their order. This is done by arranging them
* into ordered sets, merging them as sets and then rearranging the zipper
* before zipping the sets together.
*/
PMOD_EXPORT struct array *merge_array_with_order(struct array *a,
struct array *b, INT32 op)
{
ONERROR r1,r2,r3,r4,r5;
INT32 *zipper;
struct array *tmpa,*tmpb,*ret;
INT32 *ordera, *orderb;
ordera=get_set_order(a);
SET_ONERROR(r4,free,ordera);
orderb=get_set_order(b);
SET_ONERROR(r5,free,orderb);
tmpa=reorder_and_copy_array(a,ordera);
SET_ONERROR(r1,do_free_array,tmpa);
tmpb=reorder_and_copy_array(b,orderb);
SET_ONERROR(r2,do_free_array,tmpb);
zipper=merge(tmpa,tmpb,op);
SET_ONERROR(r3,free,zipper);
#if 0
{
int i;
simple_describe_array (a);
simple_describe_array (b);
fprintf (stderr, "order a: ");
for (i = 0; i < a->size; i++)
fprintf (stderr, "%d ", ordera[i]);
fprintf (stderr, "\n");
fprintf (stderr, "order b: ");
for (i = 0; i < b->size; i++)
fprintf (stderr, "%d ", orderb[i]);
fprintf (stderr, "\n");
simple_describe_array (tmpa);
simple_describe_array (tmpb);
fprintf (stderr, "zipper: ");
for (i = 1; i < *zipper + 1; i++)
fprintf (stderr, "%d ", zipper[i]);
fprintf (stderr, "\n");
}
#endif
fsort_with_order( (zipper+1), zipper+*zipper, array_merge_fun,
ordera, orderb );
ret=array_zip(tmpa,tmpb,zipper);
UNSET_ONERROR(r3); free((char *)zipper);
UNSET_ONERROR(r2); free_array(tmpb);
UNSET_ONERROR(r1); free_array(tmpa);
UNSET_ONERROR(r5); free((char *)orderb);
UNSET_ONERROR(r4); free((char *)ordera);
return ret;
}
#define CMP(X,Y) set_svalue_cmpfun(X,Y)
#define TYPE struct svalue
#define ID set_sort_svalues
#include "fsort_template.h"
#undef CMP
#undef TYPE
#undef ID
PMOD_EXPORT struct array *merge_array_without_order2(struct array *a, struct array *b,INT32 op)
{
ONERROR r1,r2,r3,r4,r5;
INT32 ap,bp,i;
struct svalue *arra,*arrb;
struct array *ret;
#ifdef PIKE_DEBUG
if(d_flag > 1)
{
array_check_type_field(a);
array_check_type_field(b);
}
#endif
SET_ONERROR(r1,do_free_array,a);
SET_ONERROR(r2,do_free_array,b);
if(a->refs==1 || !a->size)
{
arra=ITEM(a);
}else{
/* Overlow safe: ((1<<29)-4)*8 < ULONG_MAX */
arra=(struct svalue *)xalloc(a->size*sizeof(struct svalue));
MEMCPY(arra,ITEM(a),a->size*sizeof(struct svalue));
SET_ONERROR(r3,free,arra);
}
if(b->refs==1 || !b->size)
{
arrb=ITEM(b);
}else{
/* Overlow safe: ((1<<29)-4)*8 < ULONG_MAX */
arrb=(struct svalue *)xalloc(b->size*sizeof(struct svalue));
MEMCPY(arrb,ITEM(b),b->size*sizeof(struct svalue));
SET_ONERROR(r4,free,arrb);
}
set_sort_svalues(arra,arra+a->size-1);
set_sort_svalues(arrb,arrb+b->size-1);
ret=low_allocate_array(0,32);
SET_ONERROR(r5,do_free_array,ret);
ap=bp=0;
while(ap < a->size && bp < b->size)
{
i=set_svalue_cmpfun(arra+ap,arrb+bp);
if(i < 0)
i=op >> 8;
else if(i > 0)
i=op;
else
i=op >> 4;
if(i & PIKE_ARRAY_OP_A) ret=append_array(ret,arra+ap);
if(i & PIKE_ARRAY_OP_B) ret=append_array(ret,arrb+bp);
if(i & PIKE_ARRAY_OP_SKIP_A) ap++;
if(i & PIKE_ARRAY_OP_SKIP_B) bp++;
}
if((op >> 8) & PIKE_ARRAY_OP_A)
while(ap<a->size)
ret=append_array(ret,arra + ap++);
if(op & PIKE_ARRAY_OP_B)
while(bp<b->size)
ret=append_array(ret,arrb + bp++);
UNSET_ONERROR(r5);
if(arrb != ITEM(b))
{
UNSET_ONERROR(r4);
free((char *)arrb);
}
if(arra != ITEM(a))
{
UNSET_ONERROR(r3);
free((char *)arra);
}
UNSET_ONERROR(r2);
free_array(b);
UNSET_ONERROR(r1);
free_array(a);
return ret;
}
/** merge two arrays without paying attention to the order
* the elements has presently
*/
PMOD_EXPORT struct array *merge_array_without_order(struct array *a,
struct array *b,
INT32 op)
{
#if 0
/* FIXME: If this routine is ever reinstated, it has to be
* fixed to use ONERROR
*/
INT32 *zipper;
struct array *tmpa,*tmpb,*ret;
if(ordera) { free((char *)ordera); ordera=0; }
if(orderb) { free((char *)orderb); orderb=0; }
ordera=get_set_order(a);
tmpa=reorder_and_copy_array(a,ordera);
free((char *)ordera);
ordera=0;
orderb=get_set_order(b);
tmpb=reorder_and_copy_array(b,orderb);
free((char *)orderb);
orderb=0;
zipper=merge(tmpa,tmpb,op);
ret=array_zip(tmpa,tmpb,zipper);
free_array(tmpa);
free_array(tmpb);
free((char *)zipper);
return ret;
#else
add_ref(a);
add_ref(b);
return merge_array_without_order2(a,b,op);
#endif
}
/** Subtract an array from another.
*/
PMOD_EXPORT struct array *subtract_arrays(struct array *a, struct array *b)
{
#ifdef PIKE_DEBUG
if(d_flag > 1)
{
array_check_type_field(b);
}
#endif
check_array_for_destruct(a);
if((a->type_field & b->type_field) ||
((a->type_field | b->type_field) & BIT_OBJECT))
{
return merge_array_with_order(a, b, PIKE_ARRAY_OP_SUB);
}else{
if(a->refs == 1)
{
add_ref(a);
return a;
}
return slice_array(a,0,a->size);
}
}
/** And two arrays together.
*/
PMOD_EXPORT struct array *and_arrays(struct array *a, struct array *b)
{
#ifdef PIKE_DEBUG
if(d_flag > 1)
array_check_type_field(b);
#endif
check_array_for_destruct(a);
if((a->type_field & b->type_field) ||
((a->type_field | b->type_field) & BIT_OBJECT))
return merge_array_with_order(a, b, PIKE_ARRAY_OP_AND_LEFT);
else
return allocate_array_no_init(0,0);
}
int array_is_constant(struct array *a,
struct processing *p)
{
return svalues_are_constant(ITEM(a),
a->size,
array_fix_type_field(a),
p);
}
/* Return true for integers with more than one bit set */
static inline int is_more_than_one_bit(unsigned INT32 x)
{
return !!(x & (x-1));
}
node *make_node_from_array(struct array *a)
{
struct svalue s;
INT32 e;
if(!a->size)
return mkefuncallnode("aggregate",0);
if (a->size == 1)
return mkefuncallnode("aggregate", mksvaluenode(ITEM(a)));
if(array_fix_type_field(a) == BIT_INT)
{
debug_malloc_touch(a);
for(e=0; e<a->size; e++)
if(ITEM(a)[e].u.integer != 0)
break;
if(e == a->size)
{
return mkefuncallnode("allocate",mkintnode(a->size));
}
}
debug_malloc_touch(a);
if(!is_more_than_one_bit(a->type_field))
{
e=0;
debug_malloc_touch(a);
switch(a->type_field)
{
case BIT_INT:
for(e=1; e<a->size; e++)
if(ITEM(a)[e].u.integer != ITEM(a)[0].u.integer)
break;
if(e==a->size && ITEM(a)[0].u.integer==0)
return mkefuncallnode("allocate",mkintnode(a->size));
break;
case BIT_STRING:
case BIT_PROGRAM:
for(e=1; e<a->size; e++)
if(ITEM(a)[e].u.refs != ITEM(a)[0].u.refs)
break;
break;
case BIT_OBJECT:
case BIT_FUNCTION:
for(e=1; e<a->size; e++)
if(ITEM(a)[e].u.object != ITEM(a)[0].u.object ||
SUBTYPEOF(ITEM(a)[e]) != SUBTYPEOF(ITEM(a)[0]))
break;
break;
}
debug_malloc_touch(a);
if(e == a->size)
return mkefuncallnode("allocate",mknode(F_ARG_LIST,
mkintnode(a->size),
mksvaluenode(ITEM(a))));
}
if(array_is_constant(a,0))
{
debug_malloc_touch(a);
SET_SVAL(s, T_ARRAY, 0, array, a);
return mkconstantsvaluenode(&s);
}else{
node *ret=0;
debug_malloc_touch(a);
for(e = a->size; e--;) {
if (ret) {
ret = mknode(F_ARG_LIST, mksvaluenode(ITEM(a)+e), ret);
} else {
ret = mksvaluenode(ITEM(a)+e);
}
}
return mkefuncallnode("aggregate",ret);
}
}
/** Push elements of an array onto the stack. The array will be freed.
*/
PMOD_EXPORT void push_array_items(struct array *a)
{
check_stack(a->size);
check_array_for_destruct(a);
if(a->refs == 1)
{
MEMCPY(Pike_sp,ITEM(a),sizeof(struct svalue)*a->size);
Pike_sp += a->size;
a->size=0;
free_array(a);
}else{
assign_svalues_no_free(Pike_sp, ITEM(a), a->size, a->type_field);
Pike_sp += a->size;
free_array(a);
}
}
void describe_array_low(struct array *a, struct processing *p, int indent)
{
INT32 e,d;
indent += 2;
for(e=0; e<a->size; e++)
{
if(e) my_strcat(",\n");
for(d=0; d<indent; d++) my_putchar(' ');
describe_svalue(ITEM(a)+e,indent,p);
}
}
#ifdef PIKE_DEBUG
void simple_describe_array(struct array *a)
{
dynamic_buffer save_buf;
char *s;
if (a->size) {
init_buf(&save_buf);
describe_array_low(a,0,0);
s=simple_free_buf(&save_buf);
fprintf(stderr,"({\n%s\n})\n",s);
free(s);
}
else
fputs ("({ })\n", stderr);
}
void describe_index(struct array *a,
int e,
struct processing *p,
int indent)
{
describe_svalue(ITEM(a)+e, indent, p);
}
#endif
void describe_array(struct array *a,struct processing *p,int indent)
{
struct processing doing;
INT32 e;
char buf[60];
if(! a->size)
{
my_strcat("({ })");
return;
}
doing.next=p;
doing.pointer_a=(void *)a;
for(e=0;p;e++,p=p->next)
{
if(p->pointer_a == (void *)a)
{
sprintf(buf,"@%ld",(long)e);
my_strcat(buf);
return;
}
}
if (a->size == 1) {
sprintf(buf, "({ /* 1 element */\n");
} else {
sprintf(buf, "({ /* %ld elements */\n", (long)a->size);
}
my_strcat(buf);
describe_array_low(a,&doing,indent);
my_putchar('\n');
for(e=2; e<indent; e++) my_putchar(' ');
my_strcat("})");
}
/**
* Pops a number of arguments off of the stack an puts them in an array.
* The 'top' of the stack will be the last element in the array.
* @param args The number of arguments to aggregate.
*/
PMOD_EXPORT struct array *aggregate_array(INT32 args)
{
struct array *a;
a=allocate_array_no_init(args,0);
if (args) {
MEMCPY((char *)ITEM(a),(char *)(Pike_sp-args),args*sizeof(struct svalue));
array_fix_type_field (a);
Pike_sp-=args;
DO_IF_DMALLOC(while(args--) dmalloc_touch_svalue(Pike_sp + args));
}
return a;
}
/** Add an element to the end of an array by resizing the array.
*
* @param a the array to be appended
* @param s the value to be added to the new element in the array
*/
PMOD_EXPORT struct array *append_array(struct array *a, struct svalue *s)
{
a=resize_array(a,a->size+1);
array_set_index(a, a->size-1, s);
return a;
}
typedef char *(* explode_searchfunc)(void *,void *,size_t);
/** Explode a string into an array by a delimiter.
*
* @param str the string to be split
* @param del the string to split str by
* @returns an array containing the elements of the split string
*/
PMOD_EXPORT struct array *explode(struct pike_string *str,
struct pike_string *del)
{
INT32 e;
struct array *ret;
char *s, *end, *tmp;
#if 0
if(!str->len)
{
return allocate_array_no_init(0,0);
}
#endif
if(!del->len)
{
ret=allocate_array_no_init(str->len,0);
for(e=0;e<str->len;e++)
{
SET_SVAL(ITEM(ret)[e], T_STRING, 0, string, string_slice(str,e,1));
}
}else{
SearchMojt mojt;
ONERROR uwp;
explode_searchfunc f = (explode_searchfunc)0;
s=str->str;
end=s+(str->len << str->size_shift);
ret=allocate_array(10);
ret->size=0;
mojt=compile_memsearcher(MKPCHARP_STR(del),
del->len,
str->len,
del);
SET_ONERROR (uwp, do_free_object, mojt.container);
switch(str->size_shift)
{
case 0: f=(explode_searchfunc)mojt.vtab->func0; break;
case 1: f=(explode_searchfunc)mojt.vtab->func1; break;
case 2: f=(explode_searchfunc)mojt.vtab->func2; break;
#ifdef PIKE_DEBUG
default: Pike_fatal("Illegal shift.\n");
#endif
}
while((tmp = f(mojt.data, s, (end-s)>> str->size_shift)))
{
if(ret->size == ret->malloced_size)
{
e=ret->size;
ACCEPT_UNFINISHED_TYPE_FIELDS {
ret=resize_array(ret, e * 2);
} END_ACCEPT_UNFINISHED_TYPE_FIELDS;
ret->size=e;
}
SET_SVAL(ITEM(ret)[ret->size], T_STRING, 0, string,
string_slice(str,
(s-str->str)>>str->size_shift,
(tmp-s)>>str->size_shift));
ret->size++;
s=tmp+(del->len << str->size_shift);
}
if(ret->size == ret->malloced_size)
{
e=ret->size;
ACCEPT_UNFINISHED_TYPE_FIELDS {
ret=resize_array(ret, e * 2);
} END_ACCEPT_UNFINISHED_TYPE_FIELDS;
ret->size=e;
}
SET_SVAL(ITEM(ret)[ret->size], T_STRING, 0, string,
string_slice(str,
(s-str->str)>>str->size_shift,
(end-s)>>str->size_shift));
ret->size++;
CALL_AND_UNSET_ONERROR (uwp);
}
ret->type_field=BIT_STRING;
return ret;
}
/** Implode an array by creating a string with all of the array's
* elements separated by a delimiter.
*
* @param a The array containing elements to be imploded
* @param del The delimiter used to separate the array's elements in the resulting string
* @return The imploded string
*
*/
PMOD_EXPORT struct pike_string *implode(struct array *a,
struct pike_string *del)
{
INT32 len, e;
PCHARP r;
struct pike_string *ret;
struct svalue *ae;
int max_shift = del->size_shift;
len=0;
for(e=a->size, ae=a->item; e--; ae++)
switch(TYPEOF(*ae))
{
case T_INT:
if(!ae->u.integer)
continue; /* skip zero (strings) */
/* FALLTHROUGH */
default:
Pike_error("Array element %d is not a string\n", ae-a->item);
case T_STRING:
len+=ae->u.string->len + del->len;
if(ae->u.string->size_shift > max_shift)
max_shift=ae->u.string->size_shift;
break;
}
if(len) len-=del->len;
ret=begin_wide_shared_string(len,max_shift);
r=MKPCHARP_STR(ret);
len = del->len;
if((e = a->size))
for(ae=a->item;;ae++)
{
switch(TYPEOF(*ae))
{
case T_STRING:
{
struct pike_string *tmp = ae->u.string;
pike_string_cpy(r,tmp);
INC_PCHARP(r,tmp->len);
break;
}
default:
case T_INT:
if(!--e)
goto ret;
continue;
}
if(!--e)
break;
if(len)
{
pike_string_cpy(r,del);
INC_PCHARP(r,len);
}
}
ret:
return low_end_shared_string(ret);
}
/** Deeply copy an array. The mapping is used for temporary storage.
*/
PMOD_EXPORT struct array *copy_array_recursively(struct array *a,
struct mapping *m)
{
struct array *ret;
struct svalue aa, bb;
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(a);
#endif
if (!a->size) {
ret = (a->flags & ARRAY_WEAK_FLAG) ? &weak_empty_array : &empty_array;
add_ref(ret);
return ret;
}
ret=allocate_array_no_init(a->size,0);
if (m) {
SET_SVAL(aa, T_ARRAY, 0, array, a);
SET_SVAL(bb, T_ARRAY, 0, array, ret);
low_mapping_insert(m, &aa, &bb, 1);
}
ret->flags = a->flags & ~ARRAY_LVALUE;
copy_svalues_recursively_no_free(ITEM(ret),ITEM(a),a->size,m);
ret->type_field=a->type_field;
return ret;
}
/** Apply the elements of an array. Arguments the array should be
* applied with should be on the stack before the call and the
* resulting array will be on the stack after the call.
*
* Note that the array a may be modified destructively if it has
* only a single reference.
*/
PMOD_EXPORT void apply_array(struct array *a, INT32 args, int flags)
{
INT32 e, hash = 0;
struct svalue *argp = Pike_sp-args;
struct array *cycl;
DECLARE_CYCLIC();
check_stack(args);
check_array_for_destruct(a);
for (e=0; e<args; e++)
hash = hash * 33 + DO_NOT_WARN ((INT32) PTR_TO_INT (Pike_sp[-e-1].u.ptr));
if (!(cycl = (struct array *)BEGIN_CYCLIC(a, (ptrdiff_t)hash))) {
TYPE_FIELD new_types = 0;
if ((flags & 1) && (a->refs == 1)) {
/* Destructive operation possible. */
ref_push_array(a);
a->type_field |= BIT_UNFINISHED;
for (e=0; e < a->size; e++)
{
assign_svalues_no_free(Pike_sp, argp, args, BIT_MIXED);
Pike_sp+=args;
/* FIXME: Don't throw apply errors from apply_svalue here. */
apply_svalue(ITEM(a)+e,args);
new_types |= 1 << TYPEOF(Pike_sp[-1]);
assign_svalue(ITEM(a)+e, &Pike_sp[-1]);
pop_stack();
}
a->type_field = new_types;
#ifdef PIKE_DEBUG
array_check_type_field(a);
#endif
} else {
struct array *aa;
push_array(aa = allocate_array_no_init(0, a->size));
for (e=0; (e<a->size) && (e < aa->malloced_size); e++)
{
assign_svalues_no_free(Pike_sp, argp, args, BIT_MIXED);
Pike_sp+=args;
/* FIXME: Don't throw apply errors from apply_svalue here. */
apply_svalue(ITEM(a)+e,args);
new_types |= 1 << TYPEOF(Pike_sp[-1]);
assign_svalue_no_free(ITEM(aa)+e, &Pike_sp[-1]);
aa->size = e+1;
pop_stack();
}
aa->type_field = new_types;
#ifdef PIKE_DEBUG
array_check_type_field(aa);
#endif
}
stack_pop_n_elems_keep_top(args);
}
else {
pop_n_elems(args);
ref_push_array(cycl);
}
END_CYCLIC();
}
/** Reverse the elements in an array. If the array has more than one
* reference, the array will be reversed into a new array. Otherwise
* the array will be destructively reversed in place.
*/
PMOD_EXPORT struct array *reverse_array(struct array *a, int start, int end)
{
INT32 e;
struct array *ret;
if ((end <= start) || (start >= a->size)) {
add_ref(a);
return a;
}
if (end >= a->size) {
end = a->size;
} else {
end++;
}
if(a->refs == 1)
/* Reverse in-place. */
{
struct svalue *tmp0, *tmp1, swap;
tmp0 = ITEM(a) + start;
tmp1 = ITEM(a) + end;
while (tmp0 < tmp1) {
swap = *tmp0;
*(tmp0++) = *(--tmp1);
*tmp1 = swap;
}
/* FIXME: What about the flags field? */
add_ref(a);
return a;
}
/* fprintf(stderr, "R"); */
ret=allocate_array_no_init(a->size,0);
for(e=0;e<start;e++)
assign_svalue_no_free(ITEM(ret)+e,ITEM(a)+e);
for(;e<end;e++)
assign_svalue_no_free(ITEM(ret)+e,ITEM(a)+end+~e-start);
for(;e<a->size;e++)
assign_svalue_no_free(ITEM(ret)+e,ITEM(a)+e);
ret->type_field = a->type_field;
return ret;
}
/** Replaces all from elements in array a with to elements. Called
* from replaces when first argument is an array. The replace is applied
* desctructivly.
*/
void array_replace(struct array *a,
struct svalue *from,
struct svalue *to)
{
ptrdiff_t i = -1;
while((i=array_search(a,from,i+1)) >= 0) array_set_index(a,i,to);
}
#ifdef PIKE_DEBUG
PMOD_EXPORT void check_array(struct array *a)
{
INT32 e;
if(a->next && a->next->prev != a)
Pike_fatal("array->next->prev != array.\n");
if(a->prev)
{
if(a->prev->next != a)
Pike_fatal("array->prev->next != array.\n");
}else{
if(first_array != a)
Pike_fatal("array->prev == 0 but first_array != array.\n");
}
if(a->size > a->malloced_size)
Pike_fatal("Array is larger than malloced block!\n");
if(a->size < 0)
Pike_fatal("Array size is negative!\n");
if(a->malloced_size < 0)
Pike_fatal("Array malloced size is negative!\n");
if((a->item + a->size) > (a->real_item + a->malloced_size))
Pike_fatal("Array uses memory outside of the malloced block!\n");
if(a->item < a->real_item)
{
#ifdef DEBUG_MALLOC
describe(a);
#endif
Pike_fatal("Array item pointer is too small!\n");
}
if(a->refs <=0 )
Pike_fatal("Array has zero refs.\n");
for(e=0;e<a->size;e++)
{
if(! ( (1 << TYPEOF(ITEM(a)[e])) & (a->type_field) ) &&
TYPEOF(ITEM(a)[e])<16)
Pike_fatal("Type field lies.\n");
check_svalue(ITEM(a)+e);
}
}
void check_all_arrays(void)
{
struct array *a;
for (a = first_array; a; a = a->next)
check_array(a);
}
#endif /* PIKE_DEBUG */
PMOD_EXPORT void visit_array (struct array *a, int action)
{
switch (action) {
#ifdef PIKE_DEBUG
default:
Pike_fatal ("Unknown visit action %d.\n", action);
case VISIT_NORMAL:
case VISIT_COMPLEX_ONLY:
break;
#endif
case VISIT_COUNT_BYTES:
mc_counted_bytes += sizeof (struct array) +
(a->malloced_size - 1) * sizeof (struct svalue);
break;
}
if (a->type_field &
(action & VISIT_COMPLEX_ONLY ? BIT_COMPLEX : BIT_REF_TYPES)) {
size_t e, s = a->size;
int ref_type = a->flags & ARRAY_WEAK_FLAG ? REF_TYPE_WEAK : REF_TYPE_NORMAL;
for (e = 0; e < s; e++)
visit_svalue (ITEM (a) + e, ref_type);
}
}
static void gc_check_array(struct array *a)
{
GC_ENTER (a, T_ARRAY) {
if(a->type_field & BIT_COMPLEX)
{
if (a->flags & ARRAY_WEAK_FLAG) {
gc_check_weak_svalues(ITEM(a), a->size);
gc_checked_as_weak(a);
}
else
gc_check_svalues(ITEM(a), a->size);
}
} GC_LEAVE;
}
void gc_mark_array_as_referenced(struct array *a)
{
if(gc_mark(a, T_ARRAY))
GC_ENTER (a, T_ARRAY) {
if (a == gc_mark_array_pos)
gc_mark_array_pos = a->next;
if (a == gc_internal_array)
gc_internal_array = a->next;
else {
DOUBLEUNLINK (first_array, a);
DOUBLELINK (first_array, a); /* Linked in first. */
}
if (a->type_field & BIT_COMPLEX)
{
if (a->flags & ARRAY_WEAK_FLAG) {
TYPE_FIELD t;
if (!(t = gc_mark_weak_svalues(a->item, a->size)))
t = a->type_field;
/* Ugly, but we are not allowed to change type_field
* at the same time as the array is being built...
* Actually we just need better primitives for building arrays.
*/
if(!(a->type_field & BIT_UNFINISHED) || a->refs!=1)
a->type_field = t;
else
a->type_field |= t; /* There might be an additional BIT_INT. */
gc_assert_checked_as_weak(a);
}
else {
TYPE_FIELD t;
if ((t = gc_mark_svalues(ITEM(a), a->size))) {
if(!(a->type_field & BIT_UNFINISHED) || a->refs!=1)
a->type_field = t;
else
a->type_field |= t;
}
gc_assert_checked_as_nonweak(a);
}
}
} GC_LEAVE;
}
void real_gc_cycle_check_array(struct array *a, int weak)
{
GC_CYCLE_ENTER(a, T_ARRAY, weak) {
#ifdef PIKE_DEBUG
if (!gc_destruct_everything &&
(a == &empty_array || a == &weak_empty_array))
Pike_fatal("Trying to gc cycle check some *_empty_array.\n");
#endif
if (a->type_field & BIT_COMPLEX)
{
TYPE_FIELD t = a->flags & ARRAY_WEAK_FLAG ?
gc_cycle_check_weak_svalues(ITEM(a), a->size) :
gc_cycle_check_svalues(ITEM(a), a->size);
if (t) {
/* In the weak case we should only get here if references to
* destructed objects are removed. */
if(!(a->type_field & BIT_UNFINISHED) || a->refs!=1)
a->type_field = t;
else
a->type_field |= t;
}
#ifdef PIKE_DEBUG
if (a->flags & ARRAY_WEAK_FLAG)
gc_assert_checked_as_weak(a);
else
gc_assert_checked_as_nonweak(a);
#endif
}
} GC_CYCLE_LEAVE;
}
unsigned gc_touch_all_arrays(void)
{
unsigned n = 0;
struct array *a;
if (!first_array || first_array->prev)
Pike_fatal ("error in array link list.\n");
for (a = first_array; a; a = a->next) {
debug_gc_touch(a);
n++;
if (a->next && a->next->prev != a)
Pike_fatal("Error in array link list.\n");
}
return n;
}
void gc_check_all_arrays(void)
{
struct array *a;
for (a = first_array; a; a = a->next) {
#ifdef PIKE_DEBUG
if(d_flag > 1) array_check_type_field(a);
#endif
gc_check_array(a);
}
}
void gc_mark_all_arrays(void)
{
gc_mark_array_pos = gc_internal_array;
while (gc_mark_array_pos) {
struct array *a = gc_mark_array_pos;
gc_mark_array_pos = a->next;
if(gc_is_referenced(a))
gc_mark_array_as_referenced(a);
}
}
void gc_cycle_check_all_arrays(void)
{
struct array *a;
for (a = gc_internal_array; a; a = a->next) {
real_gc_cycle_check_array(a, 0);
gc_cycle_run_queue();
}
}
void gc_zap_ext_weak_refs_in_arrays(void)
{
gc_mark_array_pos = first_array;
while (gc_mark_array_pos != gc_internal_array && gc_ext_weak_refs) {
struct array *a = gc_mark_array_pos;
gc_mark_array_pos = a->next;
gc_mark_array_as_referenced(a);
}
gc_mark_discard_queue();
}
size_t gc_free_all_unreferenced_arrays(void)
{
struct array *a,*next;
size_t unreferenced = 0;
for (a = gc_internal_array; a; a = next)
{
#ifdef PIKE_DEBUG
if (!a)
Pike_fatal("Null pointer in array list.\n");
#endif
if(gc_do_free(a))
{
/* Got an extra ref from gc_cycle_pop(). */
free_svalues(ITEM(a), a->size, a->type_field);
a->size=0;
gc_free_extra_ref(a);
SET_NEXT_AND_FREE(a, free_array);
}
else
{
next=a->next;
}
unreferenced++;
}
return unreferenced;
}
#ifdef PIKE_DEBUG
void debug_dump_type_field(TYPE_FIELD t)
{
int e;
for(e=0;e<=MAX_TYPE;e++)
if(t & (1<<e))
fprintf(stderr," %s",get_name_of_type(e));
for(;e<16;e++)
if(t & (1<<e))
fprintf(stderr," <%d>",e);
}
void debug_dump_array(struct array *a)
{
fprintf(stderr,"Location=%p Refs=%d, next=%p, prev=%p, "
"flags=0x%x, size=%d, malloced_size=%d%s\n",
a,
a->refs,
a->next,
a->prev,
a->flags,
a->size,
a->malloced_size,
a == &empty_array ? " (the empty_array)" :
a == &weak_empty_array ? " (the weak_empty_array)" :
"");
fprintf(stderr,"Type field =");
debug_dump_type_field(a->type_field);
fprintf(stderr,"\n");
simple_describe_array(a);
}
#endif
/** Returns (by argument) the number of arrays and the total amount of
* memory allocated for arrays (array structs + svalues). Called from
* _memory_usage, which is exposed through Debug.memory_usage().
*/
void count_memory_in_arrays(size_t *num_, size_t *size_)
{
size_t num=0, size=0;
struct array *m;
for(m=first_array;m;m=m->next)
{
num++;
size+=sizeof(struct array)+
sizeof(struct svalue) * (m->malloced_size - 1);
}
*num_=num;
*size_=size;
}
/** Segments an array into several elements in an array based on the
* sequence in the second array argument. This function is called
* when an array is divided by another array. Pike level example, ({
* "hello", " ", "world", "!" }) / ({ " " }) -> ({ ({ "hello" }), ({
* "world", "!" }) })
*/
PMOD_EXPORT struct array *explode_array(struct array *a, struct array *b)
{
INT32 e,d,start;
struct array *tmp;
start=0;
#if 0
if(!a->size)
{
return allocate_array_no_init(0,0);
}
#endif
if(b->size)
{
BEGIN_AGGREGATE_ARRAY(1) {
for(e=0;e<=a->size - b->size;e++)
{
for(d=0;d<b->size;d++)
{
if(!is_eq(ITEM(a)+(e+d),ITEM(b)+d))
break;
}
if(d==b->size)
{
check_stack(1);
push_array(friendly_slice_array(a, start, e));
DO_AGGREGATE_ARRAY(120);
e+=b->size-1;
start=e+1;
}
}
check_stack(1);
push_array(friendly_slice_array(a, start, a->size));
} END_AGGREGATE_ARRAY;
}else{
check_stack(120);
BEGIN_AGGREGATE_ARRAY(a->size) {
for(e=0;e<a->size;e++) {
push_array(friendly_slice_array(a, e, e+1));
DO_AGGREGATE_ARRAY(120);
}
} END_AGGREGATE_ARRAY;
}
tmp=(--Pike_sp)->u.array;
debug_malloc_touch(tmp);
if(tmp->size) tmp->type_field=BIT_ARRAY;
return tmp;
}
/** Joins array elements of an array into a new array with the
* elements of the second array as joiners. Performs the opposite
* action from explode_array and is called when an array is
* multiplied by another array.
*/
PMOD_EXPORT struct array *implode_array(struct array *a, struct array *b)
{
INT32 e, size;
struct array *ret;
if (!a->size) {
add_ref(a);
return a;
}
size=0;
for(e=0;e<a->size;e++)
{
if(TYPEOF(ITEM(a)[e]) != T_ARRAY)
Pike_error("Implode array contains non-arrays.\n");
size+=ITEM(a)[e].u.array->size;
}
ret=allocate_array((a->size -1) * b->size + size);
size=0;
ret->type_field=0;
for(e=0;e<a->size;e++)
{
if(e)
{
ret->type_field|=b->type_field;
assign_svalues_no_free(ITEM(ret)+size,
ITEM(b),
b->size,
b->type_field);
size+=b->size;
}
ret->type_field|=ITEM(a)[e].u.array->type_field;
assign_svalues_no_free(ITEM(ret)+size,
ITEM(ITEM(a)[e].u.array),
ITEM(a)[e].u.array->size,
ITEM(a)[e].u.array->type_field);
size+=ITEM(a)[e].u.array->size;
}
#ifdef PIKE_DEBUG
if(size != ret->size)
Pike_fatal("Implode_array failed miserably (%d != %d)\n", size, ret->size);
#endif
return ret;
}