Select Git revision
-
Fredrik Hübinette (Hubbe) authored
Rev: src/docode.c:1.8
Fredrik Hübinette (Hubbe) authoredRev: src/docode.c:1.8
docode.c 23.65 KiB
/*\
||| This file a part of Pike, and is copyright by Fredrik Hubinette
||| Pike is distributed as GPL (General Public License)
||| See the files COPYING and DISCLAIMER for more information.
\*/
#include "global.h"
RCSID("$Id: docode.c,v 1.8 1997/01/27 01:12:53 hubbe Exp $");
#include "las.h"
#include "program.h"
#include "language.h"
#include "pike_types.h"
#include "stralloc.h"
#include "interpret.h"
#include "constants.h"
#include "array.h"
#include "macros.h"
#include "error.h"
#include "memory.h"
#include "svalue.h"
#include "main.h"
#include "lex.h"
#include "builtin_functions.h"
#include "peep.h"
#include "docode.h"
INT32 current_break=-1;
INT32 current_continue=-1;
static INT32 current_switch_case;
static INT32 current_switch_default;
static INT32 current_switch_values_on_stack;
static INT32 *current_switch_jumptable =0;
void ins_byte(unsigned char b,int area)
{
add_to_mem_block(area, (char *)&b, 1);
}
void ins_signed_byte(char b,int area)
{
add_to_mem_block(area, (char *)&b, 1);
}
void ins_short(INT16 l,int area)
{
add_to_mem_block(area, (char *)&l, sizeof(INT16));
}
/*
* Store an INT32.
*/
void ins_int(INT32 l,int area)
{
add_to_mem_block(area, (char *)&l+0, sizeof(INT32));
}
void upd_int(int offset, INT32 tmp)
{
#ifdef HANDLES_UNALIGNED_MEMORY_ACCESS
*((int *)(areas[A_PROGRAM].s.str+offset))=tmp;
#else
MEMCPY(areas[A_PROGRAM].s.str+offset, (char *)&tmp,sizeof(tmp));
#endif
}
INT32 read_int(int offset)
{
INT32 tmp;
#ifdef HANDLES_UNALIGNED_MEMORY_ACCESS
tmp=*((int *)(areas[A_PROGRAM].s.str+offset));
#else
MEMCPY((char *)&tmp, areas[A_PROGRAM].s.str+offset,sizeof(tmp));
#endif
return tmp;
}
int store_linenumbers=1;
/*
* A mechanism to remember addresses on a stack. The size of the stack is
* defined in config.h.
*/
int comp_stackp;
INT32 comp_stack[COMPILER_STACK_SIZE];
void push_address()
{
if (comp_stackp >= COMPILER_STACK_SIZE)
{
yyerror("Compiler stack overflow");
comp_stackp++;
return;
}
comp_stack[comp_stackp++] = PC;
}
void push_explicit(INT32 address)
{
if (comp_stackp >= COMPILER_STACK_SIZE)
{
yyerror("Compiler stack overflow");
comp_stackp++;
return;
}
comp_stack[comp_stackp++] = address;
}
INT32 pop_address()
{
if (comp_stackp == 0)
fatal("Compiler stack underflow.\n");
if (comp_stackp > COMPILER_STACK_SIZE)
{
--comp_stackp;
return 0;
}
return comp_stack[--comp_stackp];
}
static int label_no=0;
int alloc_label() { return ++label_no; }
int do_jump(int token,INT32 lbl)
{
if(lbl==-1) lbl=alloc_label();
emit(token, lbl);
return lbl;
}
static int do_docode2(node *n,int flags);
#define ins_label(L) do_jump(F_LABEL, L)
void do_pop(int x)
{
switch(x)
{
case 0: return;
case 1: emit2(F_POP_VALUE); break;
default: emit(F_POP_N_ELEMS,x); break;
}
}
#define DO_CODE_BLOCK(N) do_pop(do_docode(N,DO_NOT_COPY | DO_POP))
int do_docode(node *n,INT16 flags)
{
int i;
int save_current_line=current_line;
if(!n) return 0;
current_line=n->line_number;
i=do_docode2(n, flags);
current_line=save_current_line;
return i;
}
void do_jump_when_zero(node *n,int j);
void do_jump_when_non_zero(node *n,int j)
{
if(!node_is_tossable(n))
{
if(node_is_true(n))
{
do_jump(F_BRANCH,j);
return;
}
if(node_is_false(n))
return;
}
switch(n->token)
{
case F_NOT:
do_jump_when_zero(CAR(n), j);
return;
case F_OR:
do_jump_when_non_zero(CAR(n), j);
do_jump_when_non_zero(CDR(n), j);
return;
}
if(do_docode(n, DO_NOT_COPY)!=1)
fatal("Infernal compiler skiterror.\n");
do_jump(F_BRANCH_WHEN_NON_ZERO,j);
}
void do_jump_when_zero(node *n,int j)
{
if(!node_is_tossable(n))
{
if(node_is_true(n))
return;
if(node_is_false(n))
{
do_jump(F_BRANCH,j);
return;
}
}
switch(n->token)
{
case F_NOT:
do_jump_when_non_zero(CAR(n), j);
return;
case F_AND:
do_jump_when_zero(CAR(n), j);
do_jump_when_zero(CDR(n), j);
return;
}
if(do_docode(n, DO_NOT_COPY)!=1)
fatal("Infernal compiler skiterror.\n");
do_jump(F_BRANCH_WHEN_ZERO,j);
}
static INT32 count_cases(node *n)
{
INT32 ret;
if(!n) return 0;
switch(n->token)
{
case F_DO:
case F_FOR:
case F_FOREACH:
case F_INC_LOOP:
case F_DEC_LOOP:
case F_INC_NEQ_LOOP:
case F_DEC_NEQ_LOOP:
case F_SWITCH:
case '?':
return 0;
case F_CASE:
return !!CAR(n)+!!CDR(n);
default:
ret=0;
if(car_is_node(n)) ret += count_cases(CAR(n));
if(cdr_is_node(n)) ret += count_cases(CDR(n));
return ret;
}
}
static int do_docode2(node *n,int flags)
{
INT32 tmp1,tmp2,tmp3;
if(!n) return 0;
if(flags & DO_LVALUE)
{
switch(n->token)
{
default:
yyerror("Illegal lvalue.");
emit(F_NUMBER,0);
return 1;
case F_LVALUE_LIST:
case F_LOCAL:
case F_GLOBAL:
case F_IDENTIFIER:
case F_INDEX:
case F_ARROW:
case F_ARG_LIST:
break;
}
}
switch(n->token)
{
case F_PUSH_ARRAY:
tmp1=do_docode(CAR(n),0);
if(tmp1!=1)
{
fatal("Internal compiler error, Yikes!\n");
}
emit2(F_PUSH_ARRAY);
return -0x7ffffff;
case '?':
{
int adroppings , bdroppings;
if(!CDDR(n))
{
tmp1=alloc_label();
do_jump_when_zero(CAR(n), tmp1);
DO_CODE_BLOCK(CADR(n));
emit(F_LABEL, tmp1);
return 0;
}
if(!CADR(n))
{
tmp1=alloc_label();
do_jump_when_non_zero(CAR(n), tmp1);
DO_CODE_BLOCK(CDDR(n));
emit(F_LABEL,tmp1);
return 0;
}
tmp1=alloc_label();
do_jump_when_zero(CAR(n),tmp1);
adroppings=do_docode(CADR(n), flags);
tmp3=emit(F_POP_N_ELEMS,0);
/* Else */
tmp2=do_jump(F_BRANCH,-1);
emit(F_LABEL, tmp1);
bdroppings=do_docode(CDDR(n), flags);
if(adroppings < bdroppings)
{
do_pop(bdroppings - adroppings);
}
if(adroppings > bdroppings)
{
update_arg(tmp3,adroppings-bdroppings);
adroppings=bdroppings;
}
emit(F_LABEL, tmp2);
return adroppings;
}
case F_AND_EQ:
case F_OR_EQ:
case F_XOR_EQ:
case F_LSH_EQ:
case F_RSH_EQ:
case F_ADD_EQ:
case F_SUB_EQ:
case F_MULT_EQ:
case F_MOD_EQ:
case F_DIV_EQ:
tmp1=do_docode(CAR(n),DO_LVALUE);
#ifdef DEBUG
if(tmp1 != 2)
fatal("HELP! FATAL INTERNAL COMPILER ERROR\n");
#endif
if(match_types(CAR(n)->type,array_type_string) ||
match_types(CAR(n)->type,string_type_string))
{
if(do_docode(CDR(n), 0)!=1)
fatal("Internal compiler error, shit happens\n");
emit2(F_LTOSVAL2);
}else{
emit2(F_LTOSVAL);
if(do_docode(CDR(n), 0)!=1)
fatal("Internal compiler error, shit happens (again)\n");
}
switch(n->token)
{
case F_ADD_EQ: emit2(F_ADD); break;
case F_AND_EQ: emit2(F_AND); break;
case F_OR_EQ: emit2(F_OR); break;
case F_XOR_EQ: emit2(F_XOR); break;
case F_LSH_EQ: emit2(F_LSH); break;
case F_RSH_EQ: emit2(F_RSH); break;
case F_SUB_EQ: emit2(F_SUBTRACT); break;
case F_MULT_EQ:emit2(F_MULTIPLY);break;
case F_MOD_EQ: emit2(F_MOD); break;
case F_DIV_EQ: emit2(F_DIVIDE); break;
}
if(flags & DO_POP)
{
emit2(F_ASSIGN_AND_POP);
return 0;
}else{
emit2(F_ASSIGN);
return 1;
}
case F_ASSIGN:
switch(CAR(n)->token)
{
case F_AND:
case F_OR:
case F_XOR:
case F_LSH:
case F_RSH:
case F_ADD:
case F_MOD:
case F_SUBTRACT:
case F_DIVIDE:
case F_MULTIPLY:
if(node_is_eq(CDR(n),CAAR(n)))
{
tmp1=do_docode(CDR(n),DO_LVALUE);
if(match_types(CDR(n)->type,array_type_string) ||
match_types(CDR(n)->type,string_type_string))
{
if(do_docode(CDAR(n),DO_NOT_COPY)!=1)
fatal("Infernal compiler error (dumpar core |ver hela mattan).\n");
emit2(F_LTOSVAL2);
}else{
emit2(F_LTOSVAL);
if(do_docode(CDAR(n),DO_NOT_COPY)!=1)
fatal("Infernal compiler error (dumpar core).\n");
}
emit2(CAR(n)->token);
emit2(n->token);
return n->token==F_ASSIGN;
}
default:
switch(CDR(n)->token)
{
case F_LOCAL:
if(CDR(n)->u.number >= local_variables->max_number_of_locals)
yyerror("Illegal to use local variable here.");
if(do_docode(CAR(n),0)!=1) yyerror("RHS is void!");
emit(flags & DO_POP ? F_ASSIGN_LOCAL_AND_POP:F_ASSIGN_LOCAL,
CDR(n)->u.number );
break;
case F_IDENTIFIER:
if(!IDENTIFIER_IS_VARIABLE( ID_FROM_INT(& fake_program, CDR(n)->u.number)->flags))
{
yyerror("Cannot assign functions or constants.\n");
}else{
if(do_docode(CAR(n),0)!=1) yyerror("RHS is void!");
emit(flags & DO_POP ? F_ASSIGN_GLOBAL_AND_POP:F_ASSIGN_GLOBAL,
CDR(n)->u.number);
}
break;
default:
tmp1=do_docode(CDR(n),DO_LVALUE);
if(do_docode(CAR(n),0)!=1) yyerror("RHS is void!");
emit2(flags & DO_POP ? F_ASSIGN_AND_POP:F_ASSIGN);
break;
}
return flags & DO_POP ? 0 : 1;
}
case F_LAND:
case F_LOR:
if(do_docode(CAR(n),0)!=1)
fatal("Compiler internal error.\n");
tmp1=do_jump(n->token,-1);
if(do_docode(CDR(n),0)!=1)
fatal("Compiler internal error.\n");
emit(F_LABEL,tmp1);
return 1;
case F_EQ:
case F_NE:
case F_ADD:
case F_LT:
case F_LE:
case F_GT:
case F_GE:
case F_SUBTRACT:
case F_MULTIPLY:
case F_DIVIDE:
case F_MOD:
case F_LSH:
case F_RSH:
case F_XOR:
case F_OR:
case F_AND:
case F_NOT:
case F_COMPL:
case F_NEGATE:
fatal("Optimizer errror.\n");
case F_RANGE:
tmp1=do_docode(CAR(n),DO_NOT_COPY);
if(do_docode(CDR(n),DO_NOT_COPY)!=2)
fatal("Compiler internal error.\n");
emit2(n->token);
return tmp1;
case F_INC:
case F_POST_INC:
tmp1=do_docode(CAR(n),DO_LVALUE);
#ifdef DEBUG
if(tmp1 != 2)
fatal("HELP! FATAL INTERNAL COMPILER ERROR\n");
#endif
if(flags & DO_POP)
{
emit2(F_INC_AND_POP);
return 0;
}else{
emit2(n->token);
return 1;
}
case F_DEC:
case F_POST_DEC:
tmp1=do_docode(CAR(n),DO_LVALUE);
#ifdef DEBUG
if(tmp1 != 2)
fatal("HELP! FATAL INTERNAL COMPILER ERROR\n");
#endif
if(flags & DO_POP)
{
emit2(F_DEC_AND_POP);
return 0;
}else{
emit2(n->token);
return 1;
}
case F_FOR:
{
INT32 *prev_switch_jumptable = current_switch_jumptable;
INT32 break_save = current_break;
INT32 continue_save = current_continue;
current_switch_jumptable=0;
current_break=alloc_label();
current_continue=alloc_label();
if(CDR(n))
{
do_jump_when_zero(CAR(n),current_break);
tmp2=ins_label(-1);
DO_CODE_BLOCK(CADR(n));
ins_label(current_continue);
DO_CODE_BLOCK(CDDR(n));
}else{
tmp2=ins_label(-1);
}
do_jump_when_non_zero(CAR(n),tmp2);
ins_label(current_break);
current_switch_jumptable = prev_switch_jumptable;
current_break=break_save;
current_continue=continue_save;
return 0;
}
case ' ':
return do_docode(CAR(n),0)+do_docode(CDR(n),DO_LVALUE);
case F_FOREACH:
{
INT32 *prev_switch_jumptable = current_switch_jumptable;
INT32 break_save = current_break;
INT32 continue_save = current_continue;
current_switch_jumptable=0;
current_break=alloc_label();
current_continue=alloc_label();
tmp2=do_docode(CAR(n),DO_NOT_COPY);
emit2(F_CONST0);
tmp3=do_jump(F_BRANCH,-1);
tmp1=ins_label(-1);
DO_CODE_BLOCK(CDR(n));
ins_label(current_continue);
emit(F_LABEL,tmp3);
do_jump(n->token,tmp1);
ins_label(current_break);
current_switch_jumptable = prev_switch_jumptable;
current_break=break_save;
current_continue=continue_save;
do_pop(4);
return 0;
}
case F_INC_NEQ_LOOP:
case F_DEC_NEQ_LOOP:
case F_INC_LOOP:
case F_DEC_LOOP:
{
INT32 *prev_switch_jumptable = current_switch_jumptable;
INT32 break_save = current_break;
INT32 continue_save = current_continue;
current_switch_jumptable=0;
current_break=alloc_label();
current_continue=alloc_label();
tmp2=do_docode(CAR(n),0);
tmp3=do_jump(F_BRANCH,-1);
tmp1=ins_label(-1);
DO_CODE_BLOCK(CDR(n));
ins_label(current_continue);
emit(F_LABEL,tmp3);
do_jump(n->token,tmp1);
ins_label(current_break);
current_switch_jumptable = prev_switch_jumptable;
current_break=break_save;
current_continue=continue_save;
do_pop(3);
return 0;
}
case F_DO:
{
INT32 *prev_switch_jumptable = current_switch_jumptable;
INT32 break_save = current_break;
INT32 continue_save = current_continue;
current_switch_jumptable=0;
current_break=alloc_label();
current_continue=alloc_label();
tmp2=ins_label(-1);
DO_CODE_BLOCK(CAR(n));
ins_label(current_continue);
do_jump_when_non_zero(CDR(n),tmp2);
ins_label(current_break);
current_switch_jumptable = prev_switch_jumptable;
current_break=break_save;
current_continue=continue_save;
return 0;
}
case F_CAST:
if(n->type==void_type_string)
{
DO_CODE_BLOCK(CAR(n));
return 0;
}
tmp1=do_docode(CAR(n),0);
if(!tmp1) { emit2(F_CONST0); tmp1=1; }
if(tmp1>1) do_pop(tmp1-1);
tmp1=store_prog_string(n->type);
emit(F_STRING,tmp1);
emit2(F_CAST);
return 1;
case F_APPLY:
if(CAR(n)->token == F_CONSTANT)
{
if(CAR(n)->u.sval.type == T_FUNCTION)
{
if(CAR(n)->u.sval.subtype == FUNCTION_BUILTIN) /* driver fun? */
{
if(!CAR(n)->u.sval.u.efun->docode ||
!CAR(n)->u.sval.u.efun->docode(n))
{
emit2(F_MARK);
do_docode(CDR(n),0);
tmp1=store_constant(& CAR(n)->u.sval,
!(CAR(n)->tree_info & OPT_EXTERNAL_DEPEND));
emit(F_APPLY,tmp1);
}
if(n->type == void_type_string) return 0;
return 1;
}else{
if(CAR(n)->u.sval.u.object == &fake_object)
{
emit2(F_MARK);
do_docode(CDR(n),0);
emit(F_CALL_LFUN, CAR(n)->u.sval.subtype);
return 1;
}
}
}
emit2(F_MARK);
do_docode(CDR(n),0);
tmp1=store_constant(& CAR(n)->u.sval,
!(CAR(n)->tree_info & OPT_EXTERNAL_DEPEND));
emit(F_APPLY,tmp1);
return 1;
}
else if(CAR(n)->token == F_IDENTIFIER &&
IDENTIFIER_IS_FUNCTION(ID_FROM_INT(& fake_program, CAR(n)->u.number)->flags))
{
emit2(F_MARK);
do_docode(CDR(n),0);
emit(F_CALL_LFUN, CAR(n)->u.number);
return 1;
}
else
{
struct pike_string *tmp;
struct efun *fun;
node *foo;
emit2(F_MARK);
do_docode(CAR(n),0);
do_docode(CDR(n),0);
tmp=findstring("call_function");
if(!tmp) yyerror("No call_function efun.");
if(!find_module_identifier(tmp))
{
yyerror("No call_function efun.");
}else{
tmp1=store_constant(sp-1, 1);
pop_stack();
emit(F_APPLY, tmp1);
}
return 1;
}
case F_ARG_LIST:
tmp1=do_docode(CAR(n),flags & ~DO_LVALUE);
tmp1+=do_docode(CDR(n),flags);
return tmp1;
/* Switch:
* So far all switches are implemented with a binsearch lookup.
* It stores the case values in the programs area for constants.
* It also has a jump-table in the program itself, for every index in
* the array of cases, there is 2 indexes in the jumptable, and one extra.
* The first entry in the jumptable is used if you call switch with
* a value that is ranked lower than all the indexes in the array of
* cases. (Ranked by the binsearch that is) The second is used if it
* is equal to the first index. The third if it is greater than the
* first, but lesser than the second. The fourth if it is equal to
* the second.... etc. etc.
*/
case F_SWITCH:
{
INT32 e,cases,*order;
INT32 *jumptable;
INT32 prev_switch_values_on_stack = current_switch_values_on_stack;
INT32 prev_switch_case = current_switch_case;
INT32 prev_switch_default = current_switch_default;
INT32 *prev_switch_jumptable = current_switch_jumptable;
INT32 break_save = current_break;
if(do_docode(CAR(n),0)!=1)
fatal("Internal compiler error, time to panic\n");
current_break=alloc_label();
cases=count_cases(CDR(n));
tmp1=emit(F_SWITCH,0);
emit(F_ALIGN,sizeof(INT32));
current_switch_values_on_stack=0;
current_switch_case=0;
current_switch_default=-1;
current_switch_jumptable=(INT32 *)xalloc(sizeof(INT32)*(cases*2+1));
jumptable=(INT32 *)xalloc(sizeof(INT32)*(cases*2+1));
for(e=0; e<cases*2+1; e++)
{
jumptable[e]=emit(F_POINTER, 0);
current_switch_jumptable[e]=-1;
}
current_switch_jumptable[current_switch_case++]=-1;
DO_CODE_BLOCK(CDR(n));
f_aggregate(cases);
order=get_switch_order(sp[-1].u.array);
/* Check for cases inside a range */
for(e=0; e<cases-1; e++)
{
if(current_switch_jumptable[ order[e]*2+2 ] != -1)
{
if(current_switch_jumptable[ order[e]*2+2 ] !=
current_switch_jumptable[ order[e+1]*2+1 ])
yyerror("Case inside range.");
}
}
if(current_switch_default < 0)
current_switch_default = ins_label(-1);
for(e=0;e<cases*2+1;e++)
if(current_switch_jumptable[e]==-1)
current_switch_jumptable[e]=current_switch_default;
sp[-1].u.array=order_array(sp[-1].u.array,order);
reorder((void *)(current_switch_jumptable+1),cases,sizeof(INT32)*2,order);
free((char *)order);
for(e=0; e<cases*2+1; e++)
update_arg(jumptable[e], current_switch_jumptable[e]);
update_arg(tmp1, store_constant(sp-1,1));
pop_stack();
free((char *)jumptable);
free((char *)current_switch_jumptable);
current_switch_jumptable = prev_switch_jumptable;
current_switch_default = prev_switch_default;
current_switch_case = prev_switch_case;
current_switch_values_on_stack = prev_switch_values_on_stack ;
emit(F_LABEL, current_break);
current_break=break_save;
return 0;
}
case F_CASE:
{
if(!current_switch_jumptable)
{
yyerror("Case outside switch.");
}else{
if(!is_const(CAR(n)))
yyerror("Case label isn't constant.");
tmp1=eval_low(CAR(n));
if(tmp1<1)
{
yyerror("Error in case label.");
return 0;
}
pop_n_elems(tmp1-1);
current_switch_values_on_stack++;
for(tmp1=current_switch_values_on_stack; tmp1 > 1; tmp1--)
if(is_equal(sp-tmp1, sp-1))
yyerror("Duplicate case.");
current_switch_jumptable[current_switch_case++]=ins_label(-1);
if(CDR(n))
{
if(!is_const(CDR(n)))
yyerror("Case label isn't constant.");
current_switch_jumptable[current_switch_case+1]=
current_switch_jumptable[current_switch_case]=
current_switch_jumptable[current_switch_case-1];
current_switch_case+=2;
tmp1=eval_low(CDR(n));
if(tmp1<1)
{
pop_stack();
yyerror("Error in case label.");
return 0;
}
pop_n_elems(tmp1-1);
current_switch_values_on_stack++;
for(tmp1=current_switch_values_on_stack; tmp1 > 1; tmp1--)
if(is_equal(sp-tmp1, sp-1))
yyerror("Duplicate case.");
}
current_switch_jumptable[current_switch_case++]=-1;
}
return 0;
}
case F_DEFAULT:
if(!current_switch_jumptable)
{
yyerror("Default outside switch.");
}else if(current_switch_default!=-1){
yyerror("Duplicate switch default.");
}else{
current_switch_default = ins_label(-1);
}
return 0;
case F_BREAK:
if(current_break == -1)
{
yyerror("Break outside loop or switch.");
}else{
do_jump(F_BRANCH, current_break);
}
return 0;
case F_CONTINUE:
if(current_continue == -1)
{
yyerror("continue outside loop or switch.");
}else{
do_jump(F_BRANCH, current_continue);
}
return 0;
case F_RETURN:
do_docode(CAR(n),0);
emit2(F_RETURN);
return 0;
case F_SSCANF:
tmp1=do_docode(CAR(n),DO_NOT_COPY);
tmp2=do_docode(CDR(n),DO_NOT_COPY | DO_LVALUE);
emit(F_SSCANF,tmp1+tmp2);
return 1;
case F_CATCH:
{
INT32 break_save = current_break;
INT32 continue_save = current_continue;
INT32 *prev_switch_jumptable = current_switch_jumptable;
current_switch_jumptable=0;
current_break=alloc_label();
current_continue=alloc_label();
tmp1=do_jump(F_CATCH,-1);
DO_CODE_BLOCK(CAR(n));
ins_label(current_continue);
ins_label(current_break);
emit2(F_THROW_ZERO);
ins_label(tmp1);
current_break=break_save;
current_continue=continue_save;
current_switch_jumptable = prev_switch_jumptable;
return 1;
}
case F_LVALUE_LIST:
return do_docode(CAR(n),DO_LVALUE)+do_docode(CDR(n),DO_LVALUE);
case F_ARROW:
if(CDR(n)->token != F_CONSTANT || CDR(n)->u.sval.type!=T_STRING)
fatal("Bugg in F_ARROW, index not string.");
if(flags & DO_LVALUE)
{
/* FIXME!!!! */
tmp1=do_docode(CAR(n), 0);
emit(F_ARROW_STRING, store_prog_string(CDR(n)->u.sval.u.string));
return 2;
}else{
tmp1=do_docode(CAR(n), DO_NOT_COPY);
emit(F_ARROW, store_prog_string(CDR(n)->u.sval.u.string));
if(!(flags & DO_NOT_COPY))
{
while(n && (n->token==F_INDEX || n->token==F_ARROW)) n=CAR(n);
if(n->token==F_CONSTANT && !(n->node_info & OPT_EXTERNAL_DEPEND))
emit2(F_COPY_VALUE);
}
}
return tmp1;
case F_INDEX:
if(flags & DO_LVALUE)
{
tmp1=do_docode(CAR(n), 0);
if(do_docode(CDR(n),0) != 1)
fatal("Internal compiler error, please report this (1).");
if(CDR(n)->token != F_CONSTANT) emit2(F_CLEAR_STRING_SUBTYPE);
return 2;
}else{
tmp1=do_docode(CAR(n), DO_NOT_COPY);
if(do_docode(CDR(n),DO_NOT_COPY) != 1)
fatal("Internal compiler error, please report this (1).");
emit2(F_INDEX);
if(!(flags & DO_NOT_COPY))
{
while(n && (n->token==F_INDEX || n->token==F_ARROW)) n=CAR(n);
if(n->token==F_CONSTANT && !(n->node_info & OPT_EXTERNAL_DEPEND))
emit2(F_COPY_VALUE);
}
}
return tmp1;
case F_CONSTANT:
switch(n->u.sval.type)
{
case T_INT:
emit(F_NUMBER,n->u.sval.u.integer);
return 1;
case T_STRING:
tmp1=store_prog_string(n->u.sval.u.string);
emit(F_STRING,tmp1);
return 1;
case T_FUNCTION:
if(n->u.sval.subtype!=FUNCTION_BUILTIN)
{
if(n->u.sval.u.object == &fake_object)
{
emit(F_LFUN,n->u.sval.subtype);
return 1;
}
}
default:
tmp1=store_constant(&(n->u.sval),!(n->tree_info & OPT_EXTERNAL_DEPEND));
emit(F_CONSTANT,tmp1);
return 1;
case T_ARRAY:
case T_MAPPING:
case T_MULTISET:
tmp1=store_constant(&(n->u.sval),!(n->tree_info & OPT_EXTERNAL_DEPEND));
emit(F_CONSTANT,tmp1);
/* copy now or later ? */
if(!(flags & DO_NOT_COPY) && !(n->tree_info & OPT_EXTERNAL_DEPEND))
emit2(F_COPY_VALUE);
return 1;
}
case F_LOCAL:
if(n->u.number >= local_variables->max_number_of_locals)
yyerror("Illegal to use local variable here.");
if(flags & DO_LVALUE)
{
emit(F_LOCAL_LVALUE,n->u.number);
return 2;
}else{
emit(F_LOCAL,n->u.number);
return 1;
}
case F_IDENTIFIER:
if(IDENTIFIER_IS_FUNCTION(ID_FROM_INT(& fake_program, n->u.number)->flags))
{
if(flags & DO_LVALUE)
{
yyerror("Cannot assign functions.\n");
}else{
emit(F_LFUN,n->u.number);
}
}else{
if(flags & DO_LVALUE)
{
emit(F_GLOBAL_LVALUE,n->u.number);
return 2;
}else{
emit(F_GLOBAL,n->u.number);
}
}
return 1;
case F_VAL_LVAL:
return do_docode(CAR(n),flags)+do_docode(CDR(n),flags | DO_LVALUE);
default:
fatal("Infernal compiler error (unknown parse-tree-token).\n");
return 0; /* make gcc happy */
}
}
void do_code_block(node *n)
{
init_bytecode();
label_no=0;
DO_CODE_BLOCK(n);
asm_opt();
assemble();
}
int docode(node *n)
{
int tmp;
int label_no_save = label_no;
dynamic_buffer instrbuf_save = instrbuf;
instrbuf.s.str=0;
label_no=0;
init_bytecode();
tmp=do_docode(n,0);
asm_opt();
assemble();
instrbuf=instrbuf_save;
label_no = label_no_save;
return tmp;
}