Skip to content
Snippets Groups Projects
Select Git revision
  • eb48fb68925e7b3b14ca68118d87585db63c43c8
  • master default protected
  • 9.0
  • 8.0
  • 7.8
  • 7.6
  • 7.4
  • 7.2
  • 7.0
  • 0.6
  • rosuav/latex-markdown-renderer
  • rxnpatch/rxnpatch
  • marcus/gobject-introspection
  • rxnpatch/8.0
  • rosuav/pre-listening-ports
  • nt-tools
  • rosuav/async-annotations
  • rosuav/pgsql-ssl
  • rxnpatch/rxnpatch-broken/2023-10-06T094250
  • grubba/fdlib
  • grubba/wip/sakura/8.0
  • v8.0.2000
  • v8.0.1998
  • v8.0.1996
  • v8.0.1994
  • v8.0.1992
  • v8.0.1990
  • v8.0.1988
  • v8.0.1986
  • rxnpatch/clusters/8.0/2025-04-29T124414
  • rxnpatch/2025-04-29T124414
  • v8.0.1984
  • v8.0.1982
  • v8.0.1980
  • v8.0.1978
  • v8.0.1976
  • v8.0.1974
  • v8.0.1972
  • v8.0.1970
  • v8.0.1968
  • v8.0.1966
41 results

docode.h

Blame
    • Fredrik Hübinette (Hubbe)'s avatar
      19aaeb43
      made it possible to set index in strings · 19aaeb43
      Fredrik Hübinette (Hubbe) authored
      Rev: lib/modules/Yabu.pmod/test.pike:1.3
      Rev: src/builtin_functions.c:1.111
      Rev: src/docode.c:1.38
      Rev: src/docode.h:1.7
      Rev: src/interpret.c:1.85
      Rev: src/main.c:1.53
      Rev: src/module_support.c:1.12
      Rev: src/object.c:1.52
      Rev: src/operators.c:1.33
      Rev: src/operators.h:1.5
      Rev: src/stralloc.c:1.36
      Rev: src/stralloc.h:1.16
      Rev: src/testsuite.in:1.114
      19aaeb43
      History
      made it possible to set index in strings
      Fredrik Hübinette (Hubbe) authored
      Rev: lib/modules/Yabu.pmod/test.pike:1.3
      Rev: src/builtin_functions.c:1.111
      Rev: src/docode.c:1.38
      Rev: src/docode.h:1.7
      Rev: src/interpret.c:1.85
      Rev: src/main.c:1.53
      Rev: src/module_support.c:1.12
      Rev: src/object.c:1.52
      Rev: src/operators.c:1.33
      Rev: src/operators.h:1.5
      Rev: src/stralloc.c:1.36
      Rev: src/stralloc.h:1.16
      Rev: src/testsuite.in:1.114
    encode.c 114.09 KiB
    /*
    || This file is part of Pike. For copyright information see COPYRIGHT.
    || Pike is distributed under GPL, LGPL and MPL. See the file COPYING
    || for more information.
    || $Id: encode.c,v 1.208 2003/12/16 10:40:28 grubba Exp $
    */
    
    #include "global.h"
    #include "stralloc.h"
    #include "pike_macros.h"
    #include "object.h"
    #include "constants.h"
    #include "interpret.h"
    #include "svalue.h"
    #include "mapping.h"
    #include "array.h"
    #include "multiset.h"
    #include "language.h"
    #include "lex.h"
    #include "dynamic_buffer.h"
    #include "pike_error.h"
    #include "operators.h"
    #include "builtin_functions.h"
    #include "module_support.h"
    #include "fsort.h"
    #include "threads.h"
    #include "stuff.h"
    #include "version.h"
    #include "bignum.h"
    #include "pikecode.h"
    #include "pike_types.h"
    #include "opcodes.h"
    #include "peep.h"
    
    RCSID("$Id: encode.c,v 1.208 2003/12/16 10:40:28 grubba Exp $");
    
    /* #define ENCODE_DEBUG */
    
    /* Use the old encoding method for programs. */
    /* #define OLD_PIKE_ENCODE_PROGRAM */
    
    #ifdef ENCODE_DEBUG
    /* Pass a nonzero integer as the third arg to encode_value,
     * encode_value_canonic and decode_value to activate this debug. */
    #define EDB(N,X) do { debug_malloc_touch(data); if (data->debug>=N) {X;} } while (0)
    #ifndef PIKE_DEBUG
    #error ENCODE_DEBUG requires PIKE_DEBUG
    #endif
    #else
    #define EDB(N,X) do { debug_malloc_touch(data); } while (0)
    #endif
    
    #ifdef _AIX
    #include <net/nh.h>
    #endif
    
    #ifdef HAVE_NETINET_IN_H
    #include <netinet/in.h>
    #endif
    
    #ifdef HAVE_IEEEFP_H
    #include <ieeefp.h>
    #endif /* HAVE_IEEEFP_H */
    
    #include <math.h>
    
    #ifdef PIKE_DEBUG
    #define encode_value2 encode_value2_
    #define decode_value2 decode_value2_
    #endif
    
    
    /* Tags used by encode value.
     * Currently they only differ from the PIKE_T variants by
     *   TAG_FLOAT == PIKE_T_TYPE == 7
     * and
     *   TAG_TYPE == PIKE_T_FLOAT == 9
     * These are NOT to be renumbered unless the file-format version is changed!
     */
    /* Current encoding: ik0
     *
     * +---+-+-+-------+
     * |s z|s|n|t y p e|
     * +---+-+-+-------+
     *  	sz	size/small int
     *  	s	small int indicator
     *  	n	negative (or rather inverted)
     *  	type	TAG_type
     */
    #define TAG_ARRAY 0
    #define TAG_MAPPING 1
    #define TAG_MULTISET 2
    #define TAG_OBJECT 3
    #define TAG_FUNCTION 4
    #define TAG_PROGRAM 5
    #define TAG_STRING 6
    #define TAG_FLOAT 7
    #define TAG_INT 8
    #define TAG_TYPE 9           /* Not supported yet */
    
    #define TAG_DELAYED 14		/* Note: Coincides with T_ZERO. */
    #define TAG_AGAIN 15
    #define TAG_MASK 15
    #define TAG_NEG 16
    #define TAG_SMALL 32
    #define SIZE_SHIFT 6
    #define MAX_SMALL (1<<(8-SIZE_SHIFT))
    #define COUNTER_START (-MAX_SMALL)
    
    /* Entries used to encode the identifier_references table. */
    #define ID_ENTRY_EFUN_CONSTANT	-3
    #define ID_ENTRY_RAW		-2
    #define ID_ENTRY_EOT		-1
    #define ID_ENTRY_VARIABLE	0
    #define ID_ENTRY_FUNCTION	1
    #define ID_ENTRY_CONSTANT	2
    #define ID_ENTRY_INHERIT	3
    
    struct encode_data
    {
      int canonic;
      struct object *codec;
      struct svalue counter;
      struct mapping *encoded;
      /* The encoded mapping maps encoded things to their entry IDs. A
       * value less than COUNTER_START means that it's a forward reference
       * to a thing not yet encoded. */
      struct array *delayed;
      dynamic_buffer buf;
    #ifdef ENCODE_DEBUG
      int debug, depth;
    #endif
    };
    
    /* Convert to/from forward reference ID. */
    #define CONVERT_ENTRY_ID(ID) (-((ID) - COUNTER_START) - (-COUNTER_START + 1))
    
    static void encode_value2(struct svalue *val, struct encode_data *data, int force_encode);
    
    #define addstr(s, l) low_my_binary_strcat((s), (l), &(data->buf))
    #define addchar(t)   low_my_putchar((char)(t), &(data->buf))
    
    /* Code a pike string */
    
    #if BYTEORDER == 4321
    #define ENCODE_DATA(S) \
       addstr( (S)->str, (S)->len << (S)->size_shift );
    #else
    #define ENCODE_DATA(S) 				\
        switch((S)->size_shift)			\
        {						\
          case 1:					\
            for(q=0;q<(S)->len;q++) {		\
               INT16 s=htons( STR1(S)[q] );		\
               addstr( (char *)&s, sizeof(s));	\
            }					\
            break;					\
          case 2:					\
            for(q=0;q<(S)->len;q++) {		\
               INT32 s=htonl( STR2(S)[q] );		\
               addstr( (char *)&s, sizeof(s));	\
            }					\
            break;					\
        }
    #endif
    
    #define adddata(S) do {					\
      if((S)->size_shift)					\
      {							\
        int q;                                              \
        code_entry(TAG_STRING,-1, data);			\
        code_entry((S)->size_shift, (S)->len, data);	\
        ENCODE_DATA(S);                                     \
      }else{						\
        code_entry(TAG_STRING, (S)->len, data);		\
        addstr((char *)((S)->str),(S)->len);		\
      }							\
    }while(0)
    
    /* Like adddata, but allows null pointers */
    
    #define adddata3(S) do {			\
      if(S) {					\
        adddata(S);                                 \
      } else {					\
        code_entry(TAG_INT, 0, data);			\
      }						\
    }while(0)
    
    #define adddata2(s,l) addstr((char *)(s),(l) * sizeof((s)[0]));
    
    /* NOTE: Fix when type encodings change. */
    static int type_to_tag(int type)
    {
      if (type == T_FLOAT) return TAG_FLOAT;
      if (type == T_TYPE) return TAG_TYPE;
      return type;
    }
    static int (*tag_to_type)(int) = type_to_tag;
    
    /* Let's cram those bits... */
    static void code_entry(int tag, INT64 num, struct encode_data *data)
    {
      int t;
      EDB(5,
        fprintf(stderr,"%*sencode: code_entry(tag=%d (%s), num=%ld)\n",
    	    data->depth, "", tag,
    	    get_name_of_type(tag_to_type(tag)),
    	    (long)num) );
      if(num<0)
      {
        tag |= TAG_NEG;
        num = ~num;
      }
    
      if(num < MAX_SMALL)
      {
        tag |= TAG_SMALL | (num << SIZE_SHIFT);
        addchar((char)tag);
        return;
      }else{
        num -= MAX_SMALL;
      }
    
      for(t = 0; (size_t)t <
    #if 0
    	(sizeof(INT64)-1);
    #else /* !0 */
          (size_t)3;
    #endif /* 0 */
          t++)
      {
        if(num >= (((INT64)256) << (t<<3)))
          num -= (((INT64)256) << (t<<3));
        else
          break;
      }
    
      tag |= t << SIZE_SHIFT;
      addchar((char)tag);
    
      switch(t)
      {
    #if 0
      case 7: addchar(DO_NOT_WARN((char)((num >> 56)&0xff)));
      case 6: addchar(DO_NOT_WARN((char)((num >> 48)&0xff)));
      case 5: addchar(DO_NOT_WARN((char)((num >> 40)&0xff)));
      case 4: addchar(DO_NOT_WARN((char)((num >> 32)&0xff)));
    #endif /* 0 */
      case 3: addchar(DO_NOT_WARN((char)((num >> 24)&0xff)));
      case 2: addchar(DO_NOT_WARN((char)((num >> 16)&0xff)));
      case 1: addchar(DO_NOT_WARN((char)((num >> 8)&0xff)));
      case 0: addchar(DO_NOT_WARN((char)(num&0xff)));
      }
    }
    
    static void code_number(ptrdiff_t num, struct encode_data *data)
    {
      EDB(5, fprintf(stderr, "%*scode_number(%d)\n",
    		 data->depth, "", num));
      code_entry(DO_NOT_WARN(num & 15),
    	     num >> 4, data);
    }
    
    #ifdef _REENTRANT
    static void do_enable_threads(void)
    {
      exit_threads_disable(NULL);
    }
    #endif
    
    /* NOTE: Take care to encode it exactly as the corresponing
     *       type string would have been encoded (cf TFUNCTION, T_MANY).
     */
    static void encode_type(struct pike_type *t, struct encode_data *data)
    {
     one_more_type:
      if (t->type == T_MANY) {
        addchar(T_FUNCTION);
        addchar(T_MANY);
      } else {
        addchar(t->type);
      }
      switch(t->type) {
        default:
          Pike_fatal("error in type tree: %d.\n", t->type);
          /*NOTREACHED*/
    
          break;
    
        case PIKE_T_NAME:
          {
    	struct svalue sval;
    	sval.type = PIKE_T_STRING;
    	sval.subtype = 0;
    	sval.u.string = (void *)t->car;
    
    	encode_value2(&sval, data, 0);
          }
          t=t->cdr;
          goto one_more_type;
        
        case T_ASSIGN:
          {
    	ptrdiff_t marker = CAR_TO_INT(t);
    	if ((marker < 0) || (marker > 9)) {
    	  Pike_fatal("Bad assign marker: %ld\n",
    		     (long)marker);
    	}
    	addchar('0' + marker);
    	t = t->cdr;
          }
          goto one_more_type;
    
        case T_FUNCTION:
          while(t->type == T_FUNCTION) {
    	encode_type(t->car, data);
    	t = t->cdr;
          }
          addchar(T_MANY);
          /* FALL_THROUGH */
        case T_MANY:
          encode_type(t->car, data);
          t = t->cdr;
          goto one_more_type;
    
        case T_MAPPING:
        case T_OR:
        case T_AND:
          encode_type(t->car, data);
          t = t->cdr;
          goto one_more_type;
    
        case T_TYPE:
        case T_PROGRAM:
        case T_ARRAY:
        case T_MULTISET:
        case T_NOT:
          t = t->car;
          goto one_more_type;
    
        case T_INT:
          {
    	ptrdiff_t val;
    
    	val = CAR_TO_INT(t);
    	addchar((val >> 24)&0xff);
    	addchar((val >> 16)&0xff);
    	addchar((val >> 8)&0xff);
    	addchar(val & 0xff);
    	val = CDR_TO_INT(t);
    	addchar((val >> 24)&0xff);
    	addchar((val >> 16)&0xff);
    	addchar((val >> 8)&0xff);
    	addchar(val & 0xff);
          }
          break;
    
        case '0':
        case '1':
        case '2':
        case '3':
        case '4':
        case '5':
        case '6':
        case '7':
        case '8':
        case '9':
        case T_FLOAT:
        case T_STRING:
        case T_MIXED:
        case T_ZERO:
        case T_VOID:
        case PIKE_T_UNKNOWN:
          break;
    
        case T_OBJECT:
        {
          addchar(CAR_TO_INT(t));
    
          if(t->cdr)
          {
    	ptrdiff_t id = CDR_TO_INT(t);
    	if( id >= PROG_DYNAMIC_ID_START )
    	{
    	  struct program *p=id_to_program(id);
    	  if(p)
    	  {
    	    ref_push_program(p);
    	  }else{
    	    push_int(0);
    	  }
    	} else
    	  push_int( id );
          }else{
    	push_int(0);
          }
          /* If it's a program that should be encoded recursively then we
           * must delay it. Consider:
           *
           *     class A {B b;}
           *     class B {inherit A;}
           *
           * We can't dump B when the type is encountered inside A, since
           * upon decode B won't have a complete A to inherit then.
           */
          encode_value2(Pike_sp-1, data, 0);
          pop_stack();
          break;
        }
      }
    }
    
    static void zap_unfinished_program(struct program *p)
    {
      int e;
      debug_malloc_touch(p);
      if(p->flags & PROGRAM_FIXED) return; /* allow natural zapping */
      if(p->parent)
      {
        free_program(p->parent);
        p->parent=0;
      }
      for(e=0;e<p->num_constants;e++)
      {
        free_svalue(& p->constants[e].sval);
        p->constants[e].sval.type=T_INT;
      }
      
      for(e=0;e<p->num_inherits;e++)
      {
        if(p->inherits[e].parent)
        {
          free_object(p->inherits[e].parent);
          p->inherits[e].parent=0;
        }
        if(e)
        {
          if(p->inherits[e].prog)
          {
    	free_program(p->inherits[e].prog);
    	p->inherits[e].prog=0;
          }
        }
      }
    }
    
    /* force_encode == 0: Maybe dump the thing later, and only a forward
     * reference here (applies to programs only).
     *
     * force_encode == 1: Dump the thing now.
     *
     * force_encode == 2: A forward reference has been encoded to this
     * thing. Now it's time to dump it. */
    
    static void encode_value2(struct svalue *val, struct encode_data *data, int force_encode)
    
    #ifdef PIKE_DEBUG
    #undef encode_value2
    #define encode_value2(X,Y,Z) do {			\
        struct svalue *_=Pike_sp;				\
        struct svalue *X_ = (X);				\
        encode_value2_(X_,Y,Z);				\
        if(Pike_sp != _) {					\
          fprintf(stderr, "Stack error when encoding:\n");	\
          print_svalue(stderr, X_);				\
          fprintf(stderr, "\n");				\
          if (X_->type == T_PROGRAM) {			\
            dump_program_tables(X_->u.program, 2);		\
          }							\
          Pike_fatal("encode_value2() failed %p != %p!\n",	\
    		 Pike_sp, _);				\
        }							\
      } while(0)
    #endif
    
    {
      static struct svalue dested = {
        T_INT, NUMBER_DESTRUCTED,
    #ifdef HAVE_UNION_INIT
        {0}, /* Only to avoid warnings. */
    #endif
      };
      INT32 i;
      struct svalue *tmp;
      struct svalue entry_id;
    
    #ifdef ENCODE_DEBUG
      data->depth += 2;
    #endif
    
      if((val->type == T_OBJECT ||
          (val->type==T_FUNCTION && val->subtype!=FUNCTION_BUILTIN)) &&
         !val->u.object->prog)
        val = &dested;
    
      if((tmp=low_mapping_lookup(data->encoded, val)))
      {
        entry_id = *tmp;		/* It's always a small integer. */
        if (entry_id.u.integer < COUNTER_START)
          entry_id.u.integer = CONVERT_ENTRY_ID (entry_id.u.integer);
        if (force_encode && tmp->u.integer < COUNTER_START) {
          EDB(1,
    	  fprintf(stderr, "%*sEncoding delayed thing to <%d>: ",
    		  data->depth, "", entry_id.u.integer);
    	  if(data->debug == 1)
    	  {
    	    fprintf(stderr,"TAG%d",val->type);
    	  }else{
    	    print_svalue(stderr, val);
    	  
    	  }
    	  fputc('\n', stderr););
          code_entry (TAG_DELAYED, entry_id.u.integer, data);
          tmp->u.integer = entry_id.u.integer;
        }
        else {
          EDB(1,fprintf(stderr, "%*sEncoding TAG_AGAIN from <%d>\n",
    		    data->depth, "", entry_id.u.integer));
          code_entry(TAG_AGAIN, entry_id.u.integer, data);
          goto encode_done;
        }
      }else {
    #ifdef PIKE_DEBUG
        if (force_encode == 2)
          Pike_fatal ("Didn't find old entry for delay encoded thing.\n");
    #endif
        if (val->type != T_TYPE) {
          entry_id = data->counter;	/* It's always a small integer. */
          EDB(1,fprintf(stderr, "%*sEncoding to <%d>: ",
    		    data->depth, "", entry_id.u.integer);
    	  if(data->debug == 1)
    	  {
    	    fprintf(stderr,"TAG%d",val->type);
    	  }else{
    	    print_svalue(stderr, val);	  
    	  }
    	  fputc('\n', stderr););
          mapping_insert(data->encoded, val, &entry_id);
          data->counter.u.integer++;
        }
      }
    
      switch(val->type)
      {
        case T_INT:
          /* NOTE: Doesn't encode NUMBER_UNDEFINED et al. */
          /* But that's a feature; NUMBER_UNDEFINED is an inherently
           * transient value. It would lose its usefulness otherwise.
           * /mast */
    
    #if SIZEOF_INT_TYPE > 4
        {
          INT_TYPE i=val->u.integer;
          if (i != (INT32)i)
          {
    #ifdef AUTO_BIGNUM
    	 push_int(i);
    	 convert_stack_top_to_bignum();
    	 encode_value2(Pike_sp-1,data, 0);
    	 pop_stack();
    #else
    	 Pike_error ("Cannot encode integers with more than 32 bits "
    		     "without bignum support.\n");
    #endif
    	 goto encode_done;
          }
          else
    	 code_entry(TAG_INT, i,data);
        }
    #else       
          code_entry(TAG_INT, val->u.integer,data);
    #endif
          break;
    
        case T_STRING:
          adddata(val->u.string);
          break;
    
        case T_TYPE:
          /* NOTE: Types are added to the encoded mapping AFTER they have
           *       been encoded, to simplify decoding.
           */
          if (data->canonic)
    	Pike_error("Canonical encoding of the type type not supported.\n");
          code_entry(TAG_TYPE, 0, data);	/* Type encoding #0 */
          encode_type(val->u.type, data);
          EDB(2,fprintf(stderr, "%*sEncoded type to <%d>: ",
    		  data->depth, "", data->counter.u.integer);
    	  print_svalue(stderr, val);
    	  fputc('\n', stderr););
          mapping_insert(data->encoded, val, &data->counter);
          data->counter.u.integer++;
          break;
    
        case T_FLOAT:
        {
          double d = val->u.float_number;
    
    #define Pike_FP_SNAN -4 /* Signal Not A Number */
    #define Pike_FP_QNAN -3 /* Quiet Not A Number */
    #define Pike_FP_NINF -2 /* Negative infinity */
    #define Pike_FP_PINF -1 /* Positive infinity */
    #define Pike_FP_ZERO  0 /* Backwards compatible zero */
    #define Pike_FP_NZERO 1 /* Negative Zero */
    #define Pike_FP_PZERO 0 /* Positive zero */
    #define Pike_FP_UNKNOWN -4711 /* Positive zero */
    
    
    #ifdef HAVE_FPCLASS
          switch(fpclass(d)) {
    	case FP_SNAN:
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,Pike_FP_SNAN,data);
    	  break;
    
    	case FP_QNAN:
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,Pike_FP_QNAN,data);
    	  break;
    
    	case FP_NINF:
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,Pike_FP_NINF,data);
    	  break;
    
    	case FP_PINF:
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,Pike_FP_PINF,data);
    	  break;
    
    	case FP_NZERO:
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,Pike_FP_NZERO,data);
    	  break;
    
    	case FP_PZERO:
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,Pike_FP_ZERO,data); /* normal zero */
    	  break;
    
    	  /* Ugly, but switch gobbles breaks -Hubbe */
    	default:
    	  goto encode_normal_float;
          }
          break;
        encode_normal_float:
    
    #else
          {
    	int pike_ftype=Pike_FP_UNKNOWN;
    #ifdef HAVE_ISINF
    	if(isinf(d))
    	  pike_ftype=Pike_FP_PINF;
    	else
    #endif
    #ifdef HAVE_ISNAN
    	  if(isnan(d)) {
    	    pike_ftype=Pike_FP_SNAN;
    	  } else
    #endif
    #ifdef HAVE_ISZERO
    	    if(iszero(d))
    	      pike_ftype=Pike_FP_PZERO;
    	    else
    #endif
    #ifdef HAVE_FINITE
    	      if(!finite(d))
    		pike_ftype=Pike_FP_PINF;
    #endif
    	; /* Terminate any remaining else */
    	
    	if(
    #ifdef HAVE_SIGNBIT
    	  signbit(d)
    #else
    	  d<0.0
    #endif
    	  ) {
    	  switch(pike_ftype)
    	  {
    	    case Pike_FP_PINF:
    	      pike_ftype=Pike_FP_NINF;
    	      break;
    	      
    	    case Pike_FP_PZERO:
    	      pike_ftype=Pike_FP_NZERO;
    	      break;
    	  }
    	}
    	
    	if(pike_ftype != Pike_FP_UNKNOWN)
    	{
    	  code_entry(TAG_FLOAT,0,data);
    	  code_entry(TAG_FLOAT,pike_ftype,data);
    	  break;
    	}
          }
    #endif
    
          if(d == 0.0)
          {
    	code_entry(TAG_FLOAT,0,data);
    	code_entry(TAG_FLOAT,0,data);
          }else{
    	INT64 x;
    	int y;
    	double tmp;
    
    	tmp = FREXP(d, &y);
    	x = DO_NOT_WARN((INT64)((((INT64)1)<<(sizeof(INT64)*8 - 2))*tmp));
    	y -= sizeof(INT64)*8 - 2;
    
    	EDB(2,fprintf(stderr,
    		    "Encoding float... tmp: %10g, x: 0x%016llx, y: %d\n",
    		    tmp, x, y));
    
    #if 0
    	if (x && !(x & 0xffffffffUL)) {
    #endif /* 0 */
    	  x >>= 32;
    	  y += 32;
    
    	  EDB(2,fprintf(stderr,
    		      "Reducing float... x: 0x%08llx, y: %d\n",
    		      x, y));
    #if 0
    	}
    #endif /* 0 */
    #if 0
    	while(x && y && !(x&1))
    	{
    	  x>>=1;
    	  y++;
    	}
    #endif
    	code_entry(TAG_FLOAT,x,data);
    	code_entry(TAG_FLOAT,y,data);
          }
          break;
        }
    
        case T_ARRAY:
          code_entry(TAG_ARRAY, val->u.array->size, data);
          for(i=0; i<val->u.array->size; i++)
    	encode_value2(ITEM(val->u.array)+i, data, 0);
          break;
    
        case T_MAPPING:
          check_stack(2);
          ref_push_mapping(val->u.mapping);
          f_indices(1);
    
          ref_push_mapping(val->u.mapping);
          f_values(1);
    
          if (data->canonic) {
    	INT32 *order;
    	if (val->u.mapping->data->ind_types & ~(BIT_BASIC & ~BIT_TYPE)) {
    	  mapping_fix_type_field(val->u.mapping);
    	  if (val->u.mapping->data->ind_types & ~(BIT_BASIC & ~BIT_TYPE))
    	    /* This doesn't let bignums through. That's necessary as
    	     * long as they aren't handled deterministically by the
    	     * sort function. */
    	    /* They should be handled deterministically now - Hubbe */
    	    Pike_error("Canonical encoding requires basic types in indices.\n");
    	}
    	order = get_switch_order(Pike_sp[-2].u.array);
    	order_array(Pike_sp[-2].u.array, order);
    	order_array(Pike_sp[-1].u.array, order);
    	free((char *) order);
          }
    
          code_entry(TAG_MAPPING, Pike_sp[-2].u.array->size,data);
          for(i=0; i<Pike_sp[-2].u.array->size; i++)
          {
    	encode_value2(ITEM(Pike_sp[-2].u.array)+i, data, 0); /* indices */
    	encode_value2(ITEM(Pike_sp[-1].u.array)+i, data, 0); /* values */
          }
          pop_n_elems(2);
          break;
    
        case T_MULTISET: {
          struct multiset *l = val->u.multiset;
    
    #ifdef PIKE_NEW_MULTISETS
          if (multiset_indval (l) || multiset_get_cmp_less (l)->type != T_INT)
    	Pike_error ("FIXME: Encoding of multisets with values and/or "
    		    "custom sort function not yet implemented.\n");
          else {
    	/* Encode valueless multisets without compare functions in a
    	 * compatible way. */
    #endif
    	code_entry(TAG_MULTISET, multiset_sizeof (l), data);
    	if (data->canonic) {
    	  INT32 *order;
    	  if (multiset_ind_types(l) & ~(BIT_BASIC & ~BIT_TYPE)) {
    	    multiset_fix_type_field(l);
    	    if (multiset_ind_types(l) & ~(BIT_BASIC & ~BIT_TYPE))
    	      /* This doesn't let bignums through. That's necessary as
    	       * long as they aren't handled deterministically by the
    	       * sort function. */
    	      Pike_error("Canonical encoding requires basic types in indices.\n");
    	  }
    	  check_stack(1);
    #ifdef PIKE_NEW_MULTISETS
    	  push_array(multiset_indices(l));
    #else
    	  push_array(copy_array(l->ind));
    #endif
    	  order = get_switch_order(Pike_sp[-1].u.array);
    	  order_array(Pike_sp[-1].u.array, order);
    	  free((char *) order);
    	  for (i = 0; i < Pike_sp[-1].u.array->size; i++)
    	    encode_value2(ITEM(Pike_sp[-1].u.array)+i, data, 0);
    	  pop_stack();
    	}
    	else {
    #ifdef PIKE_NEW_MULTISETS
    	  struct svalue ind;
    	  union msnode *node = low_multiset_first (l->msd);
    	  for (; node; node = low_multiset_next (node))
    	    encode_value2 (low_use_multiset_index (node, ind), data, 0);
    #else
    	  for(i=0; i<l->ind->size; i++)
    	    encode_value2(ITEM(l->ind)+i, data, 0);
    #endif
    	}
    #ifdef PIKE_NEW_MULTISETS
          }
    #endif
          break;
        }
    
        case T_OBJECT:
          check_stack(1);
    
    #ifdef AUTO_BIGNUM
          /* This could be implemented a lot more generic,
           * but that will have to wait until next time. /Hubbe
           */
          if(is_bignum_object(val->u.object))
          {
    	code_entry(TAG_OBJECT, 2, data);
    	/* 256 would be better, but then negative numbers
    	 * won't work... /Hubbe
    	 */
    	push_int(36);
    	apply(val->u.object,"digits",1);
    	if(Pike_sp[-1].type != T_STRING)
    	  Pike_error("Gmp.mpz->digits did not return a string!\n");
    	encode_value2(Pike_sp-1, data, 0);
    	pop_stack();
    	break;
          }
    #endif
    
          if (data->canonic)
    	Pike_error("Canonical encoding of objects not supported.\n");
          push_svalue(val);
          apply(data->codec, "nameof", 1);
          EDB(5, fprintf(stderr, "%*s->nameof: ", data->depth, "");
    	  print_svalue(stderr, Pike_sp-1);
    	  fputc('\n', stderr););
          switch(Pike_sp[-1].type)
          {
    	case T_INT:
    	  if(Pike_sp[-1].subtype == NUMBER_UNDEFINED)
    	  {
    	    int to_change = data->buf.s.len;
    	    struct svalue tmp = entry_id;
    
    	    EDB(5,fprintf(stderr, "%*s(UNDEFINED)\n", data->depth, ""));
    
    	    /* We have to remove ourself from the cache */
    	    map_delete(data->encoded, val);
    	    
    	    pop_stack();
    	    push_svalue(val);
    	    f_object_program(1);
    
    	    /* Code the program */
    	    code_entry(TAG_OBJECT, 3,data);
    	    encode_value2(Pike_sp-1, data, 1);
    	    pop_stack();
    	    
    	    push_svalue(val);
    
    	    /* If we do not exist in cache, use backwards-
    	     * compatible method, otherwise use newfangled
    	     * style=3.  -Hubbe
    	     */
    	    if(!low_mapping_lookup(data->encoded, val))
    	    {
    	      int fun;
    	      EDB(1,fprintf(stderr, "%*sZapping 3 -> 1 in TAG_OBJECT\n",
    			    data->depth, ""));
    	      
    	      /* This causes the code_entry above to
    	       * become: code_entry(TAG_OBJECT, 1, data);
    	       * -Hubbe
    	       */
    	      data->buf.s.str[to_change] = 99;
    
    	      fun = find_identifier("encode_object", data->codec->prog);
    	      if (fun < 0)
    		Pike_error("Cannot encode objects without an "
    			   "\"encode_object\" function in the codec.\n");
    	      apply_low(data->codec,fun,1);
    
    	      /* Put value back in cache for future reference -Hubbe */
    	      mapping_insert(data->encoded, val, &tmp);
    	    }
    	    break;
    	  }
    	  /* FALL THROUGH */
    
    	default:
    	  code_entry(TAG_OBJECT, 0,data);
    	  break;
          }
          encode_value2(Pike_sp-1, data, 0);
          pop_stack();
          break;
    
        case T_FUNCTION:
          /* FIXME: Ought to have special treatment of trampolines. */
          if (data->canonic)
    	Pike_error("Canonical encoding of functions not supported.\n");
          check_stack(1);
          push_svalue(val);
          apply(data->codec,"nameof", 1);
          if(Pike_sp[-1].type == T_INT && Pike_sp[-1].subtype==NUMBER_UNDEFINED)
          {
    	if(val->subtype != FUNCTION_BUILTIN)
    	{
    	  if(find_shared_string_identifier(ID_FROM_INT(val->u.object->prog, val->subtype)->name,
    					   val->u.object->prog)==val->subtype)
    	  {
    	    /* We have to remove ourself from the cache for now */
    	    struct svalue tmp = entry_id;
    	    map_delete(data->encoded, val);
    
    	    code_entry(TAG_FUNCTION, 1, data);
    	    push_svalue(val);
    	    Pike_sp[-1].type=T_OBJECT;
    	    encode_value2(Pike_sp-1, data, 0);
    	    ref_push_string(ID_FROM_INT(val->u.object->prog, val->subtype)->name);
    	    encode_value2(Pike_sp-1, data, 0);
    	    pop_n_elems(3);
    
    	    /* Put value back in cache */
    	    mapping_insert(data->encoded, val, &tmp);
    	    goto encode_done;
    	  }
    	}
    	Pike_error("Cannot encode builtin functions.\n");
          }
    
          code_entry(TAG_FUNCTION, 0, data);
          encode_value2(Pike_sp-1, data, 0);
          pop_stack();
          break;
    
    
        case T_PROGRAM:
        {
          int d;
          if (val->u.program->id < PROG_DYNAMIC_ID_START) {
    	code_entry(TAG_PROGRAM, 3, data);
    	push_int(val->u.program->id);
    	encode_value2(Pike_sp-1, data, 0);
    	pop_stack();
    	break;
          }
          if (data->canonic)
    	Pike_error("Canonical encoding of programs not supported.\n");
          check_stack(1);
          push_svalue(val);
          apply(data->codec,"nameof", 1);
          if(Pike_sp[-1].type == val->type)
    	Pike_error("Error in master()->nameof(), same type returned.\n");
          if(Pike_sp[-1].type == T_INT && Pike_sp[-1].subtype == NUMBER_UNDEFINED)
          {
    	struct program *p=val->u.program;
    	pop_stack();
    	if( (p->flags & PROGRAM_HAS_C_METHODS) || p->event_handler )
    	{
    	  if(p->parent)
    	  {
    	    /* We have to remove ourselves from the cache for now */
    	    struct svalue tmp = entry_id;
    	    map_delete(data->encoded, val);
    
    	    code_entry(TAG_PROGRAM, 2, data);
    	    ref_push_program(p->parent);
    	    encode_value2(Pike_sp-1, data, 0);
    
    	    ref_push_program(p);
    	    f_function_name(1);
    	    if(Pike_sp[-1].type == PIKE_T_INT)
    	      Pike_error("Cannot encode C programs.\n");
    	    encode_value2(Pike_sp-1, data, 0);
    
    	    pop_n_elems(2);
    
    	    /* Put value back in cache */
    	    mapping_insert(data->encoded, val, &tmp);
    	    goto encode_done;
    	  }
    	  if( p->event_handler )
    	    Pike_error("Cannot encode programs with event handlers.\n");
    	  Pike_error("Cannot encode C programs.\n");
    	}
    
    #ifdef OLD_PIKE_ENCODE_PROGRAM
    
    	EDB(1,
    	    fprintf(stderr, "%*sencode: encoding program in old style\n",
    		    data->depth, ""));
    
    	/* Type 1 -- Old-style encoding. */
    
    	code_entry(TAG_PROGRAM, 1, data);
    	f_version(0);
    	encode_value2(Pike_sp-1,data, 0);
    	pop_stack();
    	code_number(p->flags,data);
    	code_number(p->storage_needed,data);
    	code_number(p->xstorage,data);			/**/
    	code_number(p->parent_info_storage,data);	/**/
    
    	code_number(p->alignment_needed,data);
    	code_number(p->timestamp.tv_sec,data);
    	code_number(p->timestamp.tv_usec,data);
    
    	if(p->parent)
    	  ref_push_program(p->parent);
    	else
    	  push_int(0);
    	encode_value2(Pike_sp-1,data, 0);		/**/
    	pop_stack();
    
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME) \
    	code_number( p->PIKE_CONCAT(num_,NAME), data);
    #include "program_areas.h"
    
    	code_number(PIKE_BYTECODE_METHOD, data);
    
    #ifdef ENCODE_PROGRAM
    #ifdef PIKE_DEBUG
    	{
    	  ptrdiff_t bufpos = data->buf.s.len;
    #endif /* PIKE_DEBUG */
    	  ENCODE_PROGRAM(p, &(data->buf));
    #ifdef PIKE_DEBUG
    	  if (p->num_program * sizeof(p->program[0]) !=
    	      data->buf.s.len - bufpos) {
    	    Pike_fatal("ENCODE_PROGRAM() failed:\n"
    		  "Encoded data len: %ld\n"
    		  "Expected data len: %ld\n",
    		  DO_NOT_WARN((long)(p->num_program * sizeof(p->program[0]))),
    		  DO_NOT_WARN((long)(data->buf.s.len - bufpos)));
    	  }
    	}
    #endif /* PIKE_DEBUG */
    #else /* !ENCODE_PROGRAM */
    	adddata2(p->program, p->num_program);
    #endif /* ENCODE_PROGRAM */
    
    	adddata2(p->relocations, p->num_relocations);
    
    	adddata2(p->linenumbers, p->num_linenumbers);
    	
    	for(d=0;d<p->num_identifier_index;d++)
    	  code_number(p->identifier_index[d],data);
    
    	for(d=0;d<p->num_variable_index;d++)
    	  code_number(p->variable_index[d],data);
    
    	for(d=0;d<p->num_identifier_references;d++)
    	{
    	  code_number(p->identifier_references[d].inherit_offset,data);
    	  code_number(p->identifier_references[d].identifier_offset,data);
    	  code_number(p->identifier_references[d].id_flags,data);
    	  EDB(3,fprintf(stderr,"IDREF%x > %d: { %d, %d, %d }\n",
    		      p->id,d,
    		      p->identifier_references[d].inherit_offset,
    		      p->identifier_references[d].identifier_offset,
    		      p->identifier_references[d].id_flags););
    	}
    
    	for(d=0;d<p->num_strings;d++) adddata(p->strings[d]);
    
    	for(d=0;d<p->num_inherits;d++)
    	{
    	  code_number(p->inherits[d].inherit_level,data);
    	  code_number(p->inherits[d].identifier_level,data);
    	  code_number(p->inherits[d].parent_offset,data);
    	  code_number(p->inherits[d].parent_identifier,data);
    	  code_number(p->inherits[d].storage_offset,data);
    
    	  if(p->inherits[d].parent)
    	  {
    	    ref_push_function(p->inherits[d].parent,
    			      p->inherits[d].parent_identifier);
    	    EDB(3,fprintf(stderr,"INHERIT%x coded as func { %p, %d }\n",
    			p->id, p->inherits[d].parent, p->inherits[d].parent_identifier););
    	  }else if(p->inherits[d].prog){
    	    ref_push_program(p->inherits[d].prog);
    	  }else{
    	    Pike_error("Failed to encode inherit #%d\n", d);
    	    push_int(0);
    	  }
    	  encode_value2(Pike_sp-1,data, 1);
    	  pop_stack();
    
              adddata3(p->inherits[d].name);
    
    	  EDB(3,fprintf(stderr,"INHERIT%x > %d: %d id=%d\n",
    		      p->id,d,
    		      p->inherits[d].prog->num_identifiers,
    		      p->inherits[d].prog->id););
    	}
    
    	for(d=0;d<p->num_identifiers;d++)
    	{
    	  adddata(p->identifiers[d].name);
    	  encode_type(p->identifiers[d].type, data);
    	  code_number(p->identifiers[d].identifier_flags,data);
    	  code_number(p->identifiers[d].run_time_type,data);
    	  code_number(p->identifiers[d].opt_flags,data);
    	  if (!IDENTIFIER_IS_C_FUNCTION(p->identifiers[d].identifier_flags)) {
    	    code_number(p->identifiers[d].func.offset,data);
    	  } else {
    	    Pike_error("Cannot encode functions implemented in C "
    		       "(identifier='%s').\n",
    		       p->identifiers[d].name->str);
    	  }
    	}
    
    	for(d=0;d<NUM_LFUNS;d++)
    	  code_number(p->lfuns[d], data);
    
    	for(d=0;d<p->num_constants;d++)
    	{
    	  encode_value2(& p->constants[d].sval, data, 0);
    	  adddata3(p->constants[d].name);
    	}
    
    #else /* !OLD_PIKE_ENCODE_PROGRAM */
    
    	/* Portable encoding (4 and 5). */
    
    	if (!force_encode) {
    	  /* Encode later (5). */
    	  EDB(1, fprintf(stderr, "%*sencode: delayed encoding of program\n",
    			 data->depth, ""));
    	  code_entry (TAG_PROGRAM, 5, data);
    	  data->delayed = append_array (data->delayed, val);
    	  tmp = low_mapping_lookup (data->encoded, val);
    	  tmp->u.integer = CONVERT_ENTRY_ID (tmp->u.integer);
    	  goto encode_done;
    	}
    
    	EDB(1, fprintf(stderr, "%*sencode: encoding program in new style\n",
    		       data->depth, ""));
    	code_entry(TAG_PROGRAM, 4, data);
    
    	/* Byte-order. */
    	code_number(PIKE_BYTEORDER, data);
    
    	/* flags */
    	code_number(p->flags,data);
    
    	/* version */
    	f_version(0);
    	encode_value2(Pike_sp-1, data, 0);
    	pop_stack();
    
    	/* parent */
    	if (p->parent) {
    	  ref_push_program(p->parent);
    	} else {
    	  push_int(0);
    	}
    	encode_value2(Pike_sp-1, data, 0);
    	pop_stack();
    
    	/* num_* */
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME) \
    	code_number( p->PIKE_CONCAT(num_,NAME), data);
    #include "program_areas.h"
    
    	/* Byte-code method
    	 */
    #ifdef PIKE_PORTABLE_BYTECODE
    	code_number(PIKE_BYTECODE_PORTABLE, data);
    #else /* !PIKE_PORTABLE_BYTECODE */
    	code_number(PIKE_BYTECODE_METHOD, data);
    #ifdef PIKE_USE_MACHINE_CODE
    	/* Add the checksum of the instrs array. */
    	code_number(instrs_checksum, data);
    #endif /* PIKE_USE_MACHINE_CODE */
    
    	/* program */
    #ifdef ENCODE_PROGRAM
    #ifdef PIKE_DEBUG
    	{
    	  ptrdiff_t bufpos = data->buf.s.len;
    #endif /* PIKE_DEBUG */
    	  ENCODE_PROGRAM(p, &(data->buf));
    #ifdef PIKE_DEBUG
    	  if (p->num_program * sizeof(p->program[0]) !=
    	      data->buf.s.len - bufpos) {
    	    Pike_fatal("ENCODE_PROGRAM() failed:\n"
    		  "Encoded data len: %ld\n"
    		  "Expected data len: %ld\n",
    		  DO_NOT_WARN((long)(p->num_program * sizeof(p->program[0]))),
    		  DO_NOT_WARN((long)(data->buf.s.len - bufpos)));
    	  }
    	}
    #endif /* PIKE_DEBUG */
    #else /* !ENCODE_PROGRAM */
    	adddata2(p->program, p->num_program);
    #endif /* ENCODE_PROGRAM */
    
    	/* relocations */
    	for(d=0; d<(int)p->num_relocations; d++) {
    	  code_number(p->relocations[d], data);
    	}
    
    	/* linenumbers */
    	adddata2(p->linenumbers, p->num_linenumbers);
    
    #endif /* PIKE_PORTABLE_BYTECODE */
    
    	{
    	  struct svalue str_sval;
    	  str_sval.type = T_STRING;
    	  str_sval.subtype = 0;
    	  /* strings */
    	  for(d=0;d<p->num_strings;d++) {
    	    str_sval.u.string = p->strings[d];
    	    encode_value2(&str_sval, data, 0);
    	  }
    	}
    
    	EDB(5, dump_program_tables(p, data->depth));
    
    #ifdef PIKE_PORTABLE_BYTECODE
    	/* Encode the efun constants since they are needed by the optimizer. */
    	{
    	  struct svalue str_sval;
    	  str_sval.type = T_STRING;
    	  str_sval.subtype = 0;
    
    	  /* constants */
    	  for(d=0;d<p->num_constants;d++)
    	  {
    	    if ((p->constants[d].sval.type != T_FUNCTION) ||
    		(p->constants[d].sval.subtype != FUNCTION_BUILTIN)) {
    	      continue;
    	    }
    	    code_number(ID_ENTRY_EFUN_CONSTANT, data);
    	    code_number(d, data);
    	    /* value */
    	    encode_value2(&p->constants[d].sval, data, 0);
    
    	    /* name */
    	    if (p->constants[d].name) {
    	      str_sval.u.string = p->constants[d].name;
    	      encode_value2(&str_sval, data, 0);
    	    } else {
    	      push_int(0);
    	      encode_value2(Pike_sp-1, data, 0);
    	      dmalloc_touch_svalue(Pike_sp-1);
    	      Pike_sp--;
    	    }
    	  }
    	}
    #endif /* PIKE_PORTABLE_BYTECODE */
    	/* Dump the identifiers in a portable manner... */
    	{
    	  int inherit_num = 1;
    	  struct svalue str_sval;
    	  char *id_dumped = (char *) alloca(p->num_identifiers);
    	  MEMSET(id_dumped,0,p->num_identifiers);
    	  str_sval.type = T_STRING;
    	  str_sval.subtype = 0;
    
    	  EDB(2,
    	      fprintf(stderr, "%*sencode: encoding references\n",
    		      data->depth, ""));
    
    #ifdef ENCODE_DEBUG
    	  data->depth += 2;
    #endif
    
    	  /* NOTE: d is incremented by hand inside the loop. */
    	  for (d=0; d < p->num_identifier_references;)
    	  {
    	    int d_max = p->num_identifier_references;
    
    	    /* Find insertion point of next inherit. */
    	    if (inherit_num < p->num_inherits) {
    	      d_max = p->inherits[inherit_num].identifier_ref_offset;
    	    }
    
    	    EDB (4, fprintf (stderr, "%*sencode: inherit_num: %d, d_max: %d\n",
    			     data->depth, "", inherit_num, d_max););
    
    	    /* Fix locally defined identifiers. */
    	    for (; d < d_max; d++) {
    	      struct reference *ref = p->identifier_references + d;
    	      struct inherit *inh = INHERIT_FROM_PTR(p, ref);
    	      struct identifier *id = ID_FROM_PTR(p, ref);
    
    	      /* Skip identifiers that haven't been overloaded. */
    	      if (ref->id_flags & ID_INHERITED) continue;
    
    	      EDB(3,
    		  fprintf(stderr,
    			  "%*sencoding identifier ref %d: %4x \"%s\"\n",
    			  data->depth, "", d,
    			  id->identifier_flags,
    			  id->name->str));
    
    #ifdef ENCODE_DEBUG
    	      data->depth += 2;
    #endif
    
    	      /* Variable, constant or function. */
    
    	      if (ref->inherit_offset || ref->id_flags & ID_HIDDEN) {
    		int ref_no = -1;
    		/* Explicit reference to inherited symbol. */
    
    		EDB(3,
    		    fprintf(stderr, "%*sencode: encoding raw reference\n",
    			    data->depth, ""));
    
    		code_number(ID_ENTRY_RAW, data);
    		code_number(ref->id_flags, data);
    
    		/* inherit_offset */
    		code_number(ref->inherit_offset, data);
    
    		/* identifier_offset */
    		/* Find the corresponding identifier reference
    		 * in the inherit. */
    		{
    		  struct program *p2 = p->inherits[ref->inherit_offset].prog;
    		  int i;
    		  for (i=0; i < p2->num_identifier_references; i++) {
    		    struct reference *ref2 = p2->identifier_references + i;
    		    if (!(ref2->inherit_offset) &&
    			!(ref2->id_flags & ID_HIDDEN) &&
    			(ref2->identifier_offset == ref->identifier_offset)) {
    		      ref_no = i;
    		      break;
    		    }
    		  }
    		}
    		if (ref_no == -1) {
    		  Pike_error("Failed to reverse explicit reference\n");
    		}
    		code_number(ref_no, data);
    	      } else {
    		if (id_dumped[ref->identifier_offset]) {
    		  EDB(3,
    		      fprintf(stderr, "%*sencode: already encoded reference\n",
    			      data->depth, ""));
    		  goto next_identifier_ref;
    		}
    		id_dumped[ref->identifier_offset] = 1;
    
    		switch (id->identifier_flags & IDENTIFIER_TYPE_MASK) {
    		case IDENTIFIER_CONSTANT:
    		  EDB(3,
    		      fprintf(stderr, "%*sencode: encoding constant\n",
    			      data->depth, ""));
    
    		  code_number(ID_ENTRY_CONSTANT, data);
    		  code_number(ref->id_flags, data);
    
    		  /* name */
    		  str_sval.u.string = id->name;
    		  encode_value2(&str_sval, data, 0);
    
    		  /* offset */
    		  code_number(id->func.offset, data);
    
    		  /* type */
    		  ref_push_type_value(id->type);
    		  encode_value2(Pike_sp-1, data, 0);
    		  pop_stack();
    
    		  /* run-time type */
    		  code_number(id->run_time_type, data);
    		  break;
    
    		case IDENTIFIER_PIKE_FUNCTION:
    		  EDB(3,
    		      fprintf(stderr, "%*sencode: encoding function\n",
    			      data->depth, ""));
    
    		  code_number(ID_ENTRY_FUNCTION, data);
    		  code_number(ref->id_flags, data);
    
    		  /* name */
    		  str_sval.u.string = id->name;
    		  encode_value2(&str_sval, data, 0);
    
    		  /* type */
    		  ref_push_type_value(id->type);
    		  encode_value2(Pike_sp-1, data, 0);
    		  pop_stack();
    
    		  /* func_flags (aka identifier_flags) */
    		  code_number(id->identifier_flags, data);
    
    		  /* func */
    #ifdef PIKE_PORTABLE_BYTECODE
    		  if (id->func.offset >= 0) {
    		    /* Code the number of the string containing
    		     * the raw bytecode.
    		     */
    		    code_number(((INT32 *)(p->program+id->func.offset))[-1],
    				data);
    		  } else {
    		    /* Prototype */
    		    code_number(-1, data);
    		  }
    #else /* !PIKE_PORTABLE_BYTECODE */
    		  code_number(id->func.offset, data);
    #endif /* PIKE_PORTABLE_BYTECODE */
    
    		  /* opt_flags */
    		  code_number(id->opt_flags, data);
    		  break;
    
    		case IDENTIFIER_C_FUNCTION:
    		  /* Not supported. */
    		  Pike_error("Cannot encode functions implemented in C "
    			     "(identifier='%s').\n",
    			     p->identifiers[d].name->str);
    		  break;
    
    		case IDENTIFIER_VARIABLE:
    		  EDB(3,
    		      fprintf(stderr, "%*sencode: encoding variable\n",
    			      data->depth, ""));
    
    		  code_number(ID_ENTRY_VARIABLE, data);
    		  code_number(ref->id_flags, data);
    
    		  /* name */
    		  str_sval.u.string = id->name;
    		  encode_value2(&str_sval, data, 0);
    
    		  /* type */
    		  ref_push_type_value(id->type);
    		  encode_value2(Pike_sp-1, data, 0);
    		  pop_stack();
    		  break;
    
    		default:;
    #ifdef PIKE_DEBUG
    		  Pike_fatal ("Unknown identifier type.\n");
    #endif
    		}
    	      }
    
    	      /* Identifier reference number */
    	      code_number(d, data);
    
    	    next_identifier_ref:
    	      ;		/* C requires a statement after lables. */
    #ifdef ENCODE_DEBUG
    	      data->depth -= 2;
    #endif
    	    }
    
    	    /* Encode next inherit. */
    	    if (inherit_num < p->num_inherits) {
    	      /* Inherit */
    	      INT16 inherit_flags_change = 0;
    	      struct inherit *inh = p->inherits + inherit_num;
    	      struct reference *ref = p->identifier_references + d;
    	      int i;
    
    	      EDB(3,
    		  fprintf(stderr, "%*sencode: encoding inherit\n",
    			  data->depth, ""));
    
    #ifdef ENCODE_DEBUG
    	      data->depth += 2;
    #endif
    
    	      code_number(ID_ENTRY_INHERIT, data);
    
    	      /* Calculate id_flags */
    	      for (i = 0; i < inh->prog->num_identifier_references; i++) {
    		/* Ignore overloaded identifiers. */
    		if (ref[i].inherit_offset) {
    		  inherit_flags_change |= ref[i].id_flags ^
    		    inh->prog->identifier_references[i].id_flags;
    		}
    	      }
    	      EDB(5,
    		  fprintf(stderr, "%*sraw inherit_flags: %04x\n",
    			  data->depth, "", inherit_flags_change));
    	      inherit_flags_change &= ~(ID_HIDDEN|ID_INHERITED);
    	      code_number(inherit_flags_change, data);
    
    	      EDB(5,
    		  fprintf(stderr, "%*sinherit_flags: %04x\n",
    			  data->depth, "", inherit_flags_change));
    
    	      /* Identifier reference level at insertion. */
    	      code_number(d_max, data);
    
    	      /* name */
    	      str_sval.u.string = inh->name;
    	      encode_value2(&str_sval, data, 0);
    
    	      /* prog */
    	      ref_push_program(inh->prog);
    	      encode_value2(Pike_sp-1, data, 1);
    	      pop_stack();
    
    	      /* parent */
    	      if (inh->parent) {
    		ref_push_object(inh->parent);
    	      } else {
    		push_int(0);
    	      }
    	      encode_value2(Pike_sp-1, data, 0);
    	      pop_stack();
    
    	      /* parent_identifier */
    	      code_number(inh->parent_identifier, data);
    
    	      /* parent_offset */
    	      code_number(inh->parent_offset, data);
    
    	      /* Number of identifier references. */
    	      code_number(inh->prog->num_identifier_references, data);
    
    	      inherit_num += inh->prog->num_inherits;
    
    #ifdef ENCODE_DEBUG
    	      data->depth -= 2;
    #endif
    	    }
    	  }
    	  /* End-marker */
    	  code_number(ID_ENTRY_EOT, data);
    
    #ifdef ENCODE_DEBUG
    	  data->depth -= 2;
    #endif
    	}
    
    	/* Encode the constant values table. */
    	{
    	  struct svalue str_sval;
    	  str_sval.type = T_STRING;
    	  str_sval.subtype = 0;
    
    	  /* constants */
    	  for(d=0;d<p->num_constants;d++)
    	  {
    #ifdef PIKE_PORTABLE_BYTECODE
    	    if ((p->constants[d].sval.type == T_FUNCTION) &&
    		(p->constants[d].sval.subtype == FUNCTION_BUILTIN)) {
    	      /* Already encoded above. */
    	      continue;
    	    }
    #endif /* PIKE_PORTABLE_BYTECODE */
    	    /* value */
    	    encode_value2(&p->constants[d].sval, data, 0);
    
    	    /* name */
    	    if (p->constants[d].name) {
    	      str_sval.u.string = p->constants[d].name;
    	      encode_value2(&str_sval, data, 0);
    	    } else {
    	      push_int(0);
    	      encode_value2(Pike_sp-1, data, 0);
    	      dmalloc_touch_svalue(Pike_sp-1);
    	      Pike_sp--;
    	    }
    	  }
    	}
    #endif /* OLD_PIKE_ENCODE_PROGRAM */
          }else{
    	code_entry(TAG_PROGRAM, 0, data);
    	encode_value2(Pike_sp-1, data, 0);
    	pop_stack();
          }
          break;
        }
      }
    
    encode_done:;
    
    #ifdef ENCODE_DEBUG
      data->depth -= 2;
    #endif
    }
    
    static void free_encode_data(struct encode_data *data)
    {
      toss_buffer(& data->buf);
      free_mapping(data->encoded);
      free_array(data->delayed);
    }
    
    /*! @decl string encode_value(mixed value, object|void codec)
     *!
     *! Code a value into a string.
     *!
     *! This function takes a value, and converts it to a string. This string
     *! can then be saved, sent to another Pike process, packed or used in
     *! any way you like. When you want your value back you simply send this
     *! string to @[decode_value()] and it will return the value you encoded.
     *!
     *! Almost any value can be coded, mappings, floats, arrays, circular
     *! structures etc.
     *!
     *! To encode objects, programs and functions, a codec object must be
     *! provided.
     *!
     *! @note
     *!
     *! When only simple types like int, floats, strings, mappings,
     *! multisets and arrays are encoded, the produced string is very
     *! portable between pike versions. It can at least be read by any
     *! later version.
     *!
     *! The portability when objects, programs and functions are involved
     *! depends mostly on the codec. If the byte code is encoded, i.e.
     *! when Pike programs are actually dumped in full, then the string
     *! can probably only be read by the same pike version.
     *!
     *! @seealso
     *!   @[decode_value()], @[sprintf()], @[encode_value_canonic()]
     */
    void f_encode_value(INT32 args)
    {
      ONERROR tmp;
      struct encode_data d, *data;
      int i;
      data=&d;
    
      check_all_args("encode_value", args,
    		 BIT_MIXED,
    		 BIT_VOID | BIT_OBJECT | BIT_ZERO,
    #ifdef ENCODE_DEBUG
    		 /* This argument is only an internal debug helper.
    		  * It's intentionally not part of the function
    		  * prototype, to keep the argument position free for
    		  * other uses in the future. */
    		 BIT_VOID | BIT_INT,
    #endif
    		 0);
    
      initialize_buf(&data->buf);
      data->canonic = 0;
      data->encoded=allocate_mapping(128);
      data->delayed = allocate_array (0);
      data->counter.type=T_INT;
      data->counter.u.integer=COUNTER_START;
    
    #ifdef ENCODE_DEBUG
      data->debug = args > 2 ? Pike_sp[2-args].u.integer : 0;
      data->depth = -2;
    #endif
    
      if(args > 1 && Pike_sp[1-args].type == T_OBJECT)
      {
        data->codec=Pike_sp[1-args].u.object;
      }else{
        data->codec=get_master();
        if (!data->codec) {
          /* Use a dummy if there's no master around yet, to avoid checks. */
          push_object (clone_object (null_program, 0));
          args++;
          data->codec = Pike_sp[-1].u.object;
        }
      }
    
      SET_ONERROR(tmp, free_encode_data, data);
      addstr("\266ke0", 4);
    
      encode_value2(Pike_sp-args, data, 1);
    
      for (i = 0; i < data->delayed->size; i++)
        encode_value2 (ITEM(data->delayed) + i, data, 2);
    
      UNSET_ONERROR(tmp);
    
      free_mapping(data->encoded);
      free_array (data->delayed);
    
      pop_n_elems(args);
      push_string(low_free_buf(&data->buf));
    }
    
    /*! @decl string encode_value_canonic(mixed value, object|void codec)
     *!
     *! Code a value into a string on canonical form.
     *!
     *! Takes a value and converts it to a string on canonical form, much like
     *! @[encode_value()]. The canonical form means that if an identical value is
     *! encoded, it will produce exactly the same string again, even if it's
     *! done at a later time and/or in another Pike process. The produced
     *! string is compatible with @[decode_value()].
     *!
     *! @note
     *!   Note that this function is more restrictive than @[encode_value()] with
     *!   respect to the types of values it can encode. It will throw an error
     *!   if it can't encode to a canonical form.
     *!
     *! @seealso
     *!   @[encode_value()], @[decode_value()]
     */
    void f_encode_value_canonic(INT32 args)
    {
      ONERROR tmp;
      struct encode_data d, *data;
      int i;
      data=&d;
    
      check_all_args("encode_value_canonic", args,
    		 BIT_MIXED,
    		 BIT_VOID | BIT_OBJECT | BIT_ZERO,
    #ifdef ENCODE_DEBUG
    		 /* This argument is only an internal debug helper.
    		  * It's intentionally not part of the function
    		  * prototype, to keep the argument position free for
    		  * other uses in the future. */
    		 BIT_VOID | BIT_INT,
    #endif
    		 0);
    
      initialize_buf(&data->buf);
      data->canonic = 1;
      data->encoded=allocate_mapping(128);
      data->delayed = allocate_array (0);
      data->counter.type=T_INT;
      data->counter.u.integer=COUNTER_START;
      
    #ifdef ENCODE_DEBUG
      data->debug = args > 2 ? Pike_sp[2-args].u.integer : 0;
      data->depth = -2;
    #endif
    
      if(args > 1 && Pike_sp[1-args].type == T_OBJECT)
      {
        data->codec=Pike_sp[1-args].u.object;
      }else{
        data->codec=get_master();
        if (!data->codec) {
          /* Use a dummy if there's no master around yet, to avoid checks. */
          push_object (clone_object (null_program, 0));
          args++;
          data->codec = Pike_sp[-1].u.object;
        }
      }
    
      SET_ONERROR(tmp, free_encode_data, data);
      addstr("\266ke0", 4);
    
      encode_value2(Pike_sp-args, data, 1);
    
      for (i = 0; i < data->delayed->size; i++)
        encode_value2 (ITEM(data->delayed) + i, data, 2);
    
      UNSET_ONERROR(tmp);
    
      free_mapping(data->encoded);
      free_array (data->delayed);
    
      pop_n_elems(args);
      push_string(low_free_buf(&data->buf));
    }
    
    
    struct unfinished_prog_link
    {
      struct unfinished_prog_link *next;
      struct program *prog;
    };
    
    struct unfinished_obj_link
    {
      struct unfinished_obj_link *next;
      struct object *o;
    };
    
    struct decode_data
    {
      unsigned char *data;
      ptrdiff_t len;
      ptrdiff_t ptr;
      struct mapping *decoded;
      struct unfinished_prog_link *unfinished_programs;
      struct unfinished_obj_link *unfinished_objects;
      struct svalue counter;
      struct object *codec;
      int pickyness;
      int pass;
      struct pike_string *raw;
      struct decode_data *next;
    #ifdef PIKE_THREADS
      struct thread_state *thread_state;
    #endif
    #ifdef ENCODE_DEBUG
      int debug, depth;
    #endif
      struct Supporter supporter;
    };
    
    static void decode_value2(struct decode_data *data);
    
    static int my_extract_char(struct decode_data *data)
    {
      if(data->ptr >= data->len)
        Pike_error("Format error, not enough data in string.\n");
      return data->data [ data->ptr++ ];
    }
    
    #define GETC() my_extract_char(data)
    
    #define DECODE(Z) do {					\
      EDB(5,						\
        fprintf(stderr,"%*sdecode(%s) at %d: ",		\
    	    data->depth,"",(Z),__LINE__));		\
      what=GETC();						\
      e=what>>SIZE_SHIFT;					\
      numh=0;						\
      if(what & TAG_SMALL) {				\
         num=e;						\
      } else {						\
         INT32 numl;					\
         num=0;						\
         while(e > 4) {					\
           numh = (numh<<8) + (GETC()+1);			\
           e--;						\
         }							\
         while(e-->=0) num=(num<<8) + (GETC()+1);		\
         numl = num + MAX_SMALL - 1;			\
         if (numl < num) numh++;				\
         num = numl;					\
      }							\
      if(what & TAG_NEG) {					\
        num = ~num;						\
        numh = ~numh;					\
      }							\
      EDB(5,						\
        fprintf(stderr,"type=%d (%s), num=%ld\n",	\
    	    (what & TAG_MASK),				\
    	    get_name_of_type(tag_to_type(what & TAG_MASK)),		\
    	    (long)num) ); 					\
    } while (0)
    
    
    
    #define decode_entry(X,Y,Z)					\
      do {								\
        INT32 what, e, num, numh;					\
        DECODE("decode_entry");					\
        if((what & TAG_MASK) != (X))				\
          Pike_error("Failed to decode, wrong bits (%d).\n", what & TAG_MASK); \
        (Y)=num;							\
      } while(0);
    
    #define getdata2(S,L) do {						\
          if(data->ptr + (ptrdiff_t)(sizeof(S[0])*(L)) > data->len)		\
    	Pike_error("Failed to decode string. (string range error)\n");	\
          MEMCPY((S),(data->data + data->ptr), sizeof(S[0])*(L));		\
          data->ptr+=sizeof(S[0])*(L);					\
      }while(0)
    
    #if BYTEORDER == 4321
    #define BITFLIP(S)
    #else
    #define BITFLIP(S)						\
       switch(what)							\
       {								\
         case 1: for(e=0;e<num;e++) STR1(S)[e]=ntohs(STR1(S)[e]); break;	\
         case 2: for(e=0;e<num;e++) STR2(S)[e]=ntohl(STR2(S)[e]); break;    \
       }
    #endif
    
    #define get_string_data(STR,LEN, data) do {				    \
      if((LEN) == -1)							    \
      {									    \
        INT32 what, e, num, numh;						    \
        DECODE("get_string_data");						    \
        what &= TAG_MASK;							    \
        if(data->ptr + num > data->len || num <0)				    \
          Pike_error("Failed to decode string. (string range error)\n");		    \
        if(what<0 || what>2)						    \
          Pike_error("Failed to decode string. (Illegal size shift)\n");		    \
        STR=begin_wide_shared_string(num, what);				    \
        MEMCPY(STR->str, data->data + data->ptr, num << what);		    \
        data->ptr+=(num << what);						    \
        BITFLIP(STR);							    \
        STR=end_shared_string(STR);                                             \
      }else{								    \
        if(data->ptr + (LEN) > data->len || (LEN) <0)			    \
          Pike_error("Failed to decode string. (string range error)\n");		    \
        STR=make_shared_binary_string((char *)(data->data + data->ptr), (LEN)); \
        data->ptr+=(LEN);							    \
      }									    \
    }while(0)
    
    #define getdata(X) do {				\
       long length;					\
       decode_entry(TAG_STRING, length,data);	\
       if(data->pass == 1)				\
         get_string_data(X, length, data);		\
       else						\
         data->ptr+=length;				\
      }while(0)
    
    #define getdata3(X) do {						     \
      INT32 what, e, num, numh;						     \
      DECODE("getdata3");							     \
      switch(what & TAG_MASK)						     \
      {									     \
        case TAG_INT:							     \
          X=0;								     \
          break;								     \
    									     \
        case TAG_STRING:							     \
          get_string_data(X,num,data);                                           \
          break;								     \
    									     \
        default:								     \
          Pike_error("Failed to decode string, tag is wrong: %d\n",		     \
                what & TAG_MASK);						     \
        }									     \
    }while(0)
    
    #define decode_number(X,data) do {	\
       INT32 what, e, num, numh;		\
       DECODE("decode_number");			\
       X=(what & TAG_MASK) | (num<<4);		\
       EDB(5, fprintf(stderr, "%*s  ==>%ld\n",	\
    		  data->depth, "", (long) X));	\
      }while(0)					\
    
    
    static void restore_type_stack(struct pike_type **old_stackp)
    {
    #if 0
      fprintf(stderr, "Restoring type-stack: %p => %p\n",
    	  Pike_compiler->type_stackp, old_stackp);
    #endif /* 0 */
    #ifdef PIKE_DEBUG
      if (old_stackp > Pike_compiler->type_stackp) {
        Pike_fatal("type stack out of sync!\n");
      }
    #endif /* PIKE_DEBUG */
      while(Pike_compiler->type_stackp > old_stackp) {
        free_type(*(Pike_compiler->type_stackp--));
      }
    }
    
    static void restore_type_mark(struct pike_type ***old_type_mark_stackp)
    {
    #if 0
      fprintf(stderr, "Restoring type-mark: %p => %p\n",
    	  Pike_compiler->pike_type_mark_stackp, old_type_mark_stackp);
    #endif /* 0 */
    #ifdef PIKE_DEBUG
      if (old_type_mark_stackp > Pike_compiler->pike_type_mark_stackp) {
        Pike_fatal("type Pike_interpreter.mark_stack out of sync!\n");
      }
    #endif /* PIKE_DEBUG */
      Pike_compiler->pike_type_mark_stackp = old_type_mark_stackp;
    }
    
    static void low_decode_type(struct decode_data *data)
    {
      /* FIXME: Probably ought to use the tag encodings too. */
    
      int tmp;
      ONERROR err1;
      ONERROR err2;
    
      SET_ONERROR(err1, restore_type_stack, Pike_compiler->type_stackp);
      SET_ONERROR(err2, restore_type_mark, Pike_compiler->pike_type_mark_stackp);
    
      tmp = GETC();
      switch(tmp)
      {
        default:
          Pike_error("decode_value(): Error in type string (%d).\n", tmp);
          /*NOTREACHED*/
          break;
    
        case T_ASSIGN:
          tmp = GETC();
          if ((tmp < '0') || (tmp > '9')) {
    	Pike_error("decode_value(): Bad marker in type string (%d).\n", tmp);
          }
          low_decode_type(data);
          push_assign_type(tmp);	/* Actually reverse, but they're the same */
          break;
    
        case T_FUNCTION:
          {
    	int narg = 0;
    
    	while (GETC() != T_MANY) {
    	  data->ptr--;
    	  low_decode_type(data);
    	  narg++;
    	}
    	low_decode_type(data);	/* Many */
    	low_decode_type(data);	/* Return */
    	push_reverse_type(T_MANY);
    	while(narg-- > 0) {
    	  push_reverse_type(T_FUNCTION);
    	}
          }
          break;
    
        case T_MAPPING:
        case T_OR:
        case T_AND:
          low_decode_type(data);
          low_decode_type(data);
          push_reverse_type(tmp);
          break;
    
        case T_TYPE:
        case T_PROGRAM:
        case T_ARRAY:
        case T_MULTISET:
        case T_NOT:
          low_decode_type(data);
          push_type(tmp);
          break;
    
        case T_INT:
          {
    	INT32 min=0, max=0;
    	min = GETC();
    	min = (min<<8)|GETC();
    	min = (min<<8)|GETC();
    	min = (min<<8)|GETC();
    	max = GETC();
    	max = (max<<8)|GETC();
    	max = (max<<8)|GETC();
    	max = (max<<8)|GETC();
    	push_int_type(min, max);
          }
          break;
    
        case '0':
        case '1':
        case '2':
        case '3':
        case '4':
        case '5':
        case '6':
        case '7':
        case '8':
        case '9':
        case T_FLOAT:
        case T_STRING:
        case T_MIXED:
        case T_ZERO:
        case T_VOID:
        case PIKE_T_UNKNOWN:
          push_type(tmp);
          break;
    
        case PIKE_T_NAME:
          decode_value2(data);
    
          if (Pike_sp[-1].type != PIKE_T_STRING) {
    	Pike_error("decode_value(): Type name is not a string (%s)\n",
    		   get_name_of_type(Pike_sp[-1].type));
          }
          low_decode_type(data);
          push_type_name(Pike_sp[-1].u.string);
          pop_stack();
          break;
    
        case T_OBJECT:
        {
          int flag = GETC();
    
          decode_value2(data);
          switch(Pike_sp[-1].type)
          {
    	case T_INT:
    	  push_object_type_backwards(flag, Pike_sp[-1].u.integer );
    	  break;
    
    	case T_PROGRAM:
    	  push_object_type_backwards(flag, Pike_sp[-1].u.program->id);
    	  break;
    
            case T_FUNCTION:
    	  {
    	    struct program *prog;
    	    if (Pike_sp[-1].subtype == FUNCTION_BUILTIN) {
    	      Pike_error("Failed to decode object type.\n");
    	    }
    	    prog = program_from_svalue(Pike_sp-1);
    	    if (!prog) {
    	      Pike_error("Failed to decode object type.\n");
    	    }
    	    push_object_type_backwards(flag, prog->id);
    	  }
    	  break;
    
    	default:
    	  Pike_error("Failed to decode type "
    		"(object(%s), expected object(zero|program)).\n",
    		get_name_of_type(Pike_sp[-1].type));
          }
          pop_stack();
        }
      }
    
      UNSET_ONERROR(err2);
      UNSET_ONERROR(err1);
    }
    
    
    static void zap_placeholder(struct object *placeholder)
    {
      /* fprintf(stderr, "Destructing placeholder.\n"); */
      if (placeholder->storage) {
        debug_malloc_touch(placeholder);
        destruct(placeholder);
      } else {
        free_program(placeholder->prog);
        placeholder->prog = NULL;
        debug_malloc_touch(placeholder);
      }
      free_object(placeholder);
    }
    
    static int init_placeholder(struct object *placeholder);
    
    
    #define SETUP_DECODE_MEMOBJ(TYPE, U, VAR, ALLOCATE,SCOUR) do {		\
      struct svalue *tmpptr;						\
      struct svalue tmp;							\
      if(data->pass > 1 &&							\
         (tmpptr=low_mapping_lookup(data->decoded, & entry_id)))		\
      {									\
        tmp=*tmpptr;							\
        VAR=tmp.u.U;							\
        SCOUR;                                                              \
      }else{								\
        tmp.type=TYPE;							\
        tmp.u.U=VAR=ALLOCATE;						\
        mapping_insert(data->decoded, & entry_id, &tmp);			\
      /* Since a reference to the object is stored in the mapping, we can	\
       * safely decrease this reference here. Thus it will be automatically	\
       * freed if something goes wrong.					\
       */									\
        sub_ref(VAR);							\
      }									\
    }while(0)
    
    /* This really needs to disable threads.... */
    #define decode_type(X,data)  do {		\
      type_stack_mark();				\
      low_decode_type(data);			\
      (X)=pop_unfinished_type();			\
    } while(0)
    
    static void cleanup_new_program_decode (int *orig_compilation_depth)
    {
      end_first_pass(0);
      compilation_depth = *orig_compilation_depth;
    }
    
    static void set_lex_pragmas(INT32 old_pragmas)
    {
      lex.pragmas = old_pragmas;
    }
    
    static DECLSPEC(noreturn) void decode_error (struct svalue *decoding,
    					     struct svalue *other,
    					     char *msg, ...)
      ATTRIBUTE((noreturn,format (printf, 3, 4)));
    
    static DECLSPEC(noreturn) void decode_error (struct svalue *decoding,
    					     struct svalue *other,
    					     char *msg, ...)
    {
      int n = 0;
      char buf[4096];
      va_list args;
      va_start (args, msg);
      VSNPRINTF (buf, sizeof (buf), msg, args);
      va_end (args);
    
      if (decoding) {
        push_constant_text ("Error while decoding "); n++;
        push_constant_text ("%O");
        push_svalue (decoding);
        f_sprintf (2); n++;
        push_constant_text (":\n"); n++;
      }
      push_text (buf); n++;
      if (other) {
        push_constant_text ("%O\n");
        push_svalue (other);
        f_sprintf (2); n++;
      }
      f_add (n);
    
      f_backtrace (0);
      f_aggregate (2);
    
      free_svalue(& throw_value);
      dmalloc_touch_svalue(Pike_sp-1);
      throw_value = *--Pike_sp;
      throw_severity = THROW_ERROR;
      pike_throw();
    }
    
    /* Decode bytecode string @[string_no].
     * Returns resulting offset in p->program.
     */
    static INT32 decode_portable_bytecode(INT32 string_no)
    {
      struct program *p = Pike_compiler->new_program;
      struct pike_string *bytecode;
      struct pike_string *current_file=NULL;
      INT32 current_line=0;
      int e;
      ONERROR err;
    
      if ((string_no < 0) || (string_no >= p->num_strings)) {
        Pike_error("Bad bytecode string number: %d (expected 0 - %d).\n",
    	       string_no, p->num_strings-1);
      }
    
      bytecode = p->strings[string_no];
    
      if (bytecode->len % 3) {
        Pike_error("Bad bytecode string length: %d (expected multiple of 3).\n",
    	       bytecode->len);
      }
    
      init_bytecode();  
    
      SET_ONERROR(err, exit_bytecode, NULL);
    
      switch(bytecode->size_shift) {
    #define EMIT_BYTECODE(STR) do {					\
        for (e = 0; e < bytecode->len; e += 3) {			\
          if (STR(bytecode)[e] == F_FILENAME) {			\
    	INT32 strno = STR(bytecode)[e+1];			\
    	if ((strno < 0) || (strno >= p->num_strings)) {		\
    	  Pike_error("Bad filename directive number:"		\
    		     " %d (expected 0 - %d).\n",		\
    		     strno, p->num_strings);			\
    	}							\
    	current_file = p->strings[strno];			\
          } else if (STR(bytecode)[e] == F_LINE) {			\
    	current_line = STR(bytecode)[e+1];			\
          } else {							\
    	insert_opcode2(STR(bytecode)[e],			\
    		       STR(bytecode)[e+1],			\
    		       STR(bytecode)[e+2],			\
    		       current_line,				\
    		       current_file);				\
          }								\
        }								\
      } while(0)
      case 2:
        EMIT_BYTECODE(STR2);
        break;
      case 1:
        EMIT_BYTECODE(STR1);
        break;
      case 0:
        EMIT_BYTECODE(STR0);
        break;
    #undef EMIT_BYTECODE
      default:
        Pike_fatal("Bad size_shift: %d\n", bytecode->size_shift);
      }
      UNSET_ONERROR(err);
      return assemble(1);
    }
    
    static void decode_value2(struct decode_data *data)
    
    #ifdef PIKE_DEBUG
    #undef decode_value2
    #define decode_value2(X) do { struct svalue *_=Pike_sp; decode_value2_(X); if(Pike_sp!=_+1) Pike_fatal("decode_value2 failed!\n"); } while(0)
    #endif
    
    
    {
      INT32 what, e, num, numh;
      struct svalue entry_id, *tmp2;
      struct svalue *delayed_enc_val;
    
    #ifdef ENCODE_DEBUG
      data->depth += 2;
    #endif
    
      DECODE("decode_value2");
    
      switch(what & TAG_MASK)
      {
        case TAG_DELAYED:
          EDB (2, fprintf(stderr, "%*sDecoding delay encoded from <%d>\n",
    		      data->depth, "", num););
          entry_id.type = T_INT;
          entry_id.subtype = 0;
          entry_id.u.integer = num;
          if (!(delayed_enc_val = low_mapping_lookup (data->decoded, &entry_id)))
    	Pike_error ("Failed to find previous record of delay encoded entry <%d>.\n",
    		    num);
          DECODE ("decode_value2");
          break;
    
        case TAG_AGAIN:
          EDB (1, fprintf(stderr, "%*sDecoding TAG_AGAIN from <%d>\n",
    		      data->depth, "", num););
          entry_id.type=T_INT;
          entry_id.subtype=0;
          entry_id.u.integer=num;
          if((tmp2=low_mapping_lookup(data->decoded, &entry_id)))
          {
    	push_svalue(tmp2);
          }else{
    	Pike_error("Failed to decode TAG_AGAIN entry <%d>.\n", num);
          }
          goto decode_done;
    
        default:
          entry_id = data->counter;
          data->counter.u.integer++;
          /* Fall through. */
    
        case TAG_TYPE:
          EDB (2, fprintf(stderr, "%*sDecoding to <%d>: TAG%d (%d)\n",
    		      data->depth, "", entry_id.u.integer ,
    		      what & TAG_MASK, num););
          /* Types are added to the encoded mapping AFTER they have been
           * encoded. */
          delayed_enc_val = NULL;
          break;
      }
    
      check_stack(1);
    
      switch(what & TAG_MASK)
      {
        case TAG_INT:
          push_int(num);
          break;
    
        case TAG_STRING:
        {
          struct pike_string *str;
          get_string_data(str, num, data);
          push_string(str);
          break;
        }
    
        case TAG_FLOAT:
        {
          double res;
    
          EDB(2,fprintf(stderr, "Decoding float... numh:0x%08x, num:0x%08x\n",
    		  numh, num));
    
          res = LDEXP((double)numh, 32) + (double)(unsigned INT32)num;
    
          EDB(2,fprintf(stderr, "Mantissa: %10g\n", res));
    
          DECODE("float");
    
          EDB(2,fprintf(stderr, "Exponent: %d\n", num));
    
          if(!res)
          {
    	DECLARE_INF
    	DECLARE_NAN
    
    	switch(num)
    	{
    	  case Pike_FP_SNAN: /* Signal Not A Number */
    	  case Pike_FP_QNAN: /* Quiet Not A Number */
    	    push_float(DO_NOT_WARN((FLOAT_TYPE)MAKE_NAN()));
    	    break;
    		       
    	  case Pike_FP_NINF: /* Negative infinity */
    	    push_float(DO_NOT_WARN((FLOAT_TYPE)MAKE_INF(-1)));
    	    break;
    
    	  case Pike_FP_PINF: /* Positive infinity */
    	    push_float(DO_NOT_WARN((FLOAT_TYPE)MAKE_INF(1)));
    	    break;
    
    	  case Pike_FP_NZERO: /* Negative Zero */
    	    push_float(-0.0); /* Does this do what we want? */
    	    break;
    
    	  default:
    	    push_float(DO_NOT_WARN((FLOAT_TYPE)LDEXP(res, num)));
    	    break;
    	}
    	break;
          }
    
          push_float(DO_NOT_WARN((FLOAT_TYPE)LDEXP(res, num)));
          break;
        }
    
        case TAG_TYPE:
        {
          struct pike_type *t;
    
          decode_type(t, data);
          check_type_string(t);
          push_type_value(t);
    
          entry_id = data->counter;
          data->counter.u.integer++;
        }
        break;
    
        case TAG_ARRAY:
        {
          struct array *a;
          TYPE_FIELD types;
          if(num < 0)
    	Pike_error("Failed to decode array. (array size is negative)\n");
    
          /* Heruetical */
          if(data->ptr + num > data->len)
    	Pike_error("Failed to decode array. (not enough data)\n");
    
          EDB(2,fprintf(stderr, "%*sDecoding array of size %d to <%d>\n",
    		  data->depth, "", num, entry_id.u.integer));
    
          SETUP_DECODE_MEMOBJ(T_ARRAY, array, a, allocate_array(num),
    			  free_svalues(ITEM(a), a->size, a->type_field));
    
          types = 0;
          for(e=0;e<num;e++)
          {
    	decode_value2(data);
    	stack_pop_to_no_free (ITEM(a) + e);
    	types |= 1 << ITEM(a)[e].type;
          }
          a->type_field = types;
          ref_push_array(a);
          goto decode_done;
        }
    
        case TAG_MAPPING:
        {
          struct mapping *m;
          if(num<0)
    	Pike_error("Failed to decode mapping. (mapping size is negative)\n");
    
          /* Heruetical */
          if(data->ptr + num > data->len)
    	Pike_error("Failed to decode mapping. (not enough data)\n");
    
          EDB(2,fprintf(stderr, "%*sDecoding mapping of size %d to <%d>\n",
    		  data->depth, "", num, entry_id.u.integer));
    
          SETUP_DECODE_MEMOBJ(T_MAPPING, mapping, m, allocate_mapping(num), ; );
    
          for(e=0;e<num;e++)
          {
    	decode_value2(data);
    	decode_value2(data);
    	mapping_insert(m, Pike_sp-2, Pike_sp-1);
    	pop_n_elems(2);
          }
          ref_push_mapping(m);
          goto decode_done;
        }
    
        case TAG_MULTISET:
        {
          struct multiset *m;
          struct array *a;
          TYPE_FIELD types;
          if(num<0)
    	Pike_error("Failed to decode multiset. (multiset size is negative)\n");
    
          /* Heruetical */
          if(data->ptr + num > data->len)
    	Pike_error("Failed to decode multiset. (not enough data)\n");
    
          /* NOTE: This code knows stuff about the implementation of multisets...*/
    
          EDB(2,fprintf(stderr, "%*sDecoding multiset of size %d to <%d>\n",
    		  data->depth, "", num, entry_id.u.integer));
    #ifdef PIKE_NEW_MULTISETS
          SETUP_DECODE_MEMOBJ (T_MULTISET, multiset, m,
    			   allocate_multiset (0, 0, NULL), ;);
          /* FIXME: This array could be avoided by building the multiset directly. */
          a = low_allocate_array (num, 0);
    #else
          SETUP_DECODE_MEMOBJ(T_MULTISET, multiset, m,
    			  allocate_multiset(low_allocate_array(num, 0)), ;);
          a=m->ind;
    #endif
    
          types = 0;
          for(e=0;e<num;e++)
          {
    	decode_value2(data);
    	stack_pop_to_no_free (ITEM(a) + e);
    	types |= 1 << ITEM(a)[e].type;
          }
          a->type_field = types;
    #ifdef PIKE_NEW_MULTISETS
          {
    	struct multiset *l = mkmultiset (a);
    	free_array (a);
    	/* This special case is handled efficiently by merge_multisets. */
    	merge_multisets (m, l, PIKE_MERGE_DESTR_A | PIKE_ARRAY_OP_ADD);
    	free_multiset (l);
          }
    #else
          order_multiset(m);
    #endif
          ref_push_multiset(m);
          goto decode_done;
        }
    
        case TAG_OBJECT:
        {
          decode_value2(data);
    
          switch(num)
          {
    	case 0:
    	  apply(data->codec,"objectof", 1);
    	  break;
    
    	case 1:
    	  {
    	    int fun;
    	    /* decode_value_clone_object does not call __INIT, so
    	     * we want to do that ourselves...
    	     */
    	    struct object *o=decode_value_clone_object(Pike_sp-1);
    
    	    if (!o) {
    	      if (data->pickyness)
    		decode_error (NULL, Pike_sp - 1,
    			      "Failed to decode program for object. Got: ");
    	      EDB(1,fprintf(stderr, "%*sDecoded a failed object to <%d>: ",
    			    data->depth, "", entry_id.u.integer);
    		  print_svalue(stderr, Pike_sp-1);
    		  fputc('\n', stderr););
    	      decode_value2(data);
    	      pop_n_elems(2);
    	      push_undefined();
    	      break;
    	    }
    
    	    debug_malloc_touch(o);
    	    pop_stack();
    	    push_object(o);
    
    	    if(o->prog)
    	    {
    	      if(o->prog->flags & PROGRAM_FINISHED)
    	      {
    		int lfun = FIND_LFUN(o->prog, LFUN___INIT);
    		if (lfun >= 0) {
    		  apply_low(o, lfun, 0);
    		  pop_stack();
    		}
    		/* FIXME: Should call LFUN_CREATE here in <= 7.2
    		 * compatibility mode. */
    	      }else{
    		struct unfinished_obj_link *ol=ALLOC_STRUCT(unfinished_obj_link);
    		ol->o=o;
    		ol->next=data->unfinished_objects;
    		data->unfinished_objects=ol;
    	      }
    	    }
    
    	    EDB(2,fprintf(stderr, "%*sDecoded an object to <%d>: ",
    			data->depth, "", entry_id.u.integer);
    		print_svalue(stderr, Pike_sp-1);
    		fputc('\n', stderr););
    
    	    ref_push_object(o);
    	    decode_value2(data);
    	    if(!data->codec)
    	      decode_error(Pike_sp - 1, NULL,
    			   "Cannot decode object without codec.\n");
    
    	    fun = find_identifier("decode_object", data->codec->prog);
    	    if (fun < 0)
    	      decode_error(Pike_sp - 1, NULL,
    			   "Cannot decode objects without a "
    			   "\"decode_object\" function in the codec.\n");
    	    apply_low(data->codec,fun,2);
    	    pop_stack();
    	  }
    
    	  break;
    
    #ifdef AUTO_BIGNUM
    	  /* It is possible that we should do this even without
    	   * AUTO_BIGNUM /Hubbe
    	   * However, that requires that some of the bignum functions
    	   * are always available...
    	   */
    	case 2:
    	{
    	  check_stack(2);
    	  /* 256 would be better, but then negative numbers
    	   * doesn't work... /Hubbe
    	   */
    	  push_int(36);
    	  convert_stack_top_with_base_to_bignum();
    #if SIZEOF_INT_TYPE > 4
    	  reduce_stack_top_bignum();
    #endif
    	  break;
    	}
    
    #endif
    	case 3:
    	  pop_stack();
    	  decode_value2(data);
    	  break;
    
    	default:
    	  Pike_error("Object coding not compatible.\n");
    	  break;
          }
    
          if(Pike_sp[-1].type != T_OBJECT && data->pickyness)
    	decode_error(NULL, Pike_sp - 1, "Failed to decode object. Got: ");
    
          break;
        }
    
        case TAG_FUNCTION:
          decode_value2(data);
    
          switch(num)
          {
    	case 0:
    	  apply(data->codec,"functionof", 1);
    	  break;
    
    	case 1: {
    	  struct program *p;
    	  if(Pike_sp[-1].type != T_OBJECT && data->pickyness)
    	    decode_error(NULL, Pike_sp - 1,
    			 "Failed to decode function object. Got: ");
    
    	  decode_value2(data);
    	  if(Pike_sp[-1].type != T_STRING && data->pickyness)
    	    decode_error(NULL, Pike_sp - 1,
    			 "Failed to decode function identifier. Got: ");
    
    	  if (Pike_sp[-2].type == T_OBJECT &&
    	      Pike_sp[-1].type == T_STRING &&
    	      (p = Pike_sp[-2].u.object->prog)) {
    	    int f = find_shared_string_identifier(Pike_sp[-1].u.string, p);
    	    if (f >= 0) {
    	      struct svalue func;
    	      low_object_index_no_free(&func, Pike_sp[-2].u.object, f);
    #ifdef PIKE_SECURITY
    	      /* FIXME: Check access to the function. */
    #endif
    	      pop_n_elems(2);
    	      *Pike_sp++ = func;
    	      dmalloc_touch_svalue(Pike_sp-1);
    	      break;
    	    }
    	    else if (data->pickyness) {
    	      if (Pike_sp[-1].u.string->size_shift)
    		decode_error(NULL, Pike_sp - 2, "Couldn't find identifier in ");
    	      else
    		decode_error(NULL, Pike_sp - 2, "Couldn't find identifier %s in ",
    			     Pike_sp[-1].u.string->str);
    	    }
    	  }
    	  pop_stack();
    	  break;
    	}
    
    	default:
    	  Pike_error("Function coding not compatible.\n");
    	  break;
          }
    
          if(Pike_sp[-1].type != T_FUNCTION && data->pickyness)
    	decode_error(NULL, Pike_sp - 1, "Failed to decode function. Got: ");
    
          break;
    
    
        case TAG_PROGRAM:
          EDB(3,
    	  fprintf(stderr, "%*s  TAG_PROGRAM(%d)\n",
    		  data->depth, "", num));
          switch(num)
          {
    	case 0:
    	{
    	  struct program *p;
    
    	  decode_value2(data);
    	  apply(data->codec,"programof", 1);
    
    	  p = program_from_svalue(Pike_sp-1);
    
    	  if (!p) {
    	    if(data->pickyness)
    	      decode_error(NULL, Pike_sp - 1,
    			   "Failed to decode program. Got: ");
    	    pop_stack();
    	    push_undefined();
    	    break;
    	  }
    
    	  add_ref(p);
    	  pop_stack();
    	  push_program(p);
    	  break;
    	}
    
    	case 1:			/* Old-style encoding. */
    	{
    	  int d, in;
    	  size_t size=0;
    	  char *dat=0;
    	  struct program *p;
    	  struct object *placeholder=0;
    	  ONERROR err1, err2, err3, err4;
    
    #ifdef _REENTRANT
    	  ONERROR err;
    	  low_init_threads_disable();
    	  SET_ONERROR(err, do_enable_threads, 0);
    #endif
    
    	  fprintf (stderr, "Warning: Using old-style encoding\n");
    
    	  EDB(2,fprintf(stderr, "%*sDecoding a program to <%d>: ",
    		      data->depth, "", entry_id.u.integer);
    	      print_svalue(stderr, &entry_id);
    	      fputc('\n', stderr););
    
    	  SETUP_DECODE_MEMOBJ(T_PROGRAM, program, p, low_allocate_program(),;);
    
    	  SET_ONERROR(err3, zap_unfinished_program, p);
    	  
    	  if(data->pass == 1)
    	  {
    	    if(! data->supporter.prog)
    	      data->supporter.prog = p;
    
    	    debug_malloc_touch(p);
    	    ref_push_program(p);
    	    apply(data->codec, "__register_new_program", 1);
    	      
    	    /* return a placeholder */
    	    if(Pike_sp[-1].type == T_OBJECT)
    	    {
    	      placeholder=Pike_sp[-1].u.object;
    	      if(placeholder->prog != null_program)
    		Pike_error("Placeholder object is not a __null_program clone.\n");
    	      dmalloc_touch_svalue(Pike_sp-1);
    	      Pike_sp--;
    	    }
    	    else if (Pike_sp[-1].type != T_INT ||
    		     Pike_sp[-1].u.integer)
    	      Pike_error ("Expected placeholder object or zero "
    			  "from __register_new_program.\n");
    	    else {
    	      pop_stack();
    	    }
    	  }
    
    	  if(placeholder)
    	    SET_ONERROR(err4, zap_placeholder, placeholder);
    
    	  decode_value2(data);
    	  f_version(0);
    	  if(!is_eq(Pike_sp-1,Pike_sp-2))
    	    Pike_error("Cannot decode programs encoded with other pike version.\n");
    	  pop_n_elems(2);
    
    	  data->pickyness++;
    
    	  debug_malloc_touch(p);
    	  decode_number(p->flags,data);
    
    	  if(data->pass == 1)
    	  {
    	    p->flags &= ~(PROGRAM_FINISHED | PROGRAM_OPTIMIZED |
    			  PROGRAM_FIXED | PROGRAM_PASS_1_DONE);
    	    p->flags |= PROGRAM_AVOID_CHECK;
    	  }
    	  decode_number(p->storage_needed,data);
    	  decode_number(p->xstorage,data);
    	  decode_number(p->parent_info_storage,data);
    	  decode_number(p->alignment_needed,data);
    	  decode_number(p->timestamp.tv_sec,data);
    	  decode_number(p->timestamp.tv_usec,data);
    
    	  if(data->pass && p->parent)
    	  {
    	    free_program(p->parent);
    	    p->parent=0;
    	  }
    
    	  debug_malloc_touch(p);
    	  decode_value2(data);
    	  switch(Pike_sp[-1].type)
    	  {
    	    case T_INT:
    	      p->parent=0;
    	      break;
    	    case T_PROGRAM:
    	      p->parent=Pike_sp[-1].u.program;
    	      break;
    	    case T_FUNCTION:
    	      p->parent=program_from_svalue(Pike_sp-1);
    	      break;
    	    default:
    	      decode_error(NULL, Pike_sp - 1, "Program decode failed. Got: ");
    	  }
    	  if(p->parent) {
    	    add_ref(p->parent);
    	  }
    	  pop_stack();
    
    	  debug_malloc_touch(p);
    
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME) \
    	  decode_number( p->PIKE_CONCAT(num_,NAME), data);
    #include "program_areas.h"
    
    
    	  if(data->pass == 1)
    	  {
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME) \
              size=DO_ALIGN(size, ALIGNOF(TYPE)); \
              size+=p->PIKE_CONCAT(num_,NAME)*sizeof(p->NAME[0]);
    #include "program_areas.h"
    
    	    dat=xalloc(size);
    	    debug_malloc_touch(dat);
    	    MEMSET(dat,0,size);
    	    size=0;
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME) \
    	  size=DO_ALIGN(size, ALIGNOF(TYPE)); \
              p->NAME=(TYPE *)(dat+size); \
              size+=p->PIKE_CONCAT(num_,NAME)*sizeof(p->NAME[0]);
    #include "program_areas.h"
    
    	    for(e=0;e<p->num_constants;e++)
    	      p->constants[e].sval.type=T_INT;
    
    	    debug_malloc_touch(dat);
    	    debug_malloc_touch(p);
    	    
    	    p->total_size=size + sizeof(struct program);
    	    
    	    p->flags |= PROGRAM_OPTIMIZED;
    	  }
    
    	  {
    	    INT32 bytecode_method = 0;
    	    decode_number(bytecode_method, data);
    	    if (bytecode_method != PIKE_BYTECODE_METHOD) {
    	      Pike_error("Unsupported bytecode method: %d. Expected %d\n",
    			 bytecode_method, PIKE_BYTECODE_METHOD);
    	    }
    	  }
    
    	  getdata2(p->program, p->num_program);
    	  getdata2(p->relocations, p->num_relocations);
    
    #ifdef DECODE_PROGRAM
    	  {
    	    int byteorder = PIKE_BYTEORDER;	/* FIXME: Used by bytecode.h */
    	    DECODE_PROGRAM(p);
    	  }
    #endif /* DECODE_PROGRAM */
    	  make_program_executable(p);
    
    	  getdata2(p->linenumbers, p->num_linenumbers);
    
    	  /* Now with the linenumber info in place it gets useful to
    	   * include the program in error messages. */
    
    #ifdef DEBUG_MALLOC
    	  if(p->num_linenumbers && p->linenumbers &&
    	     EXTRACT_UCHAR(p->linenumbers)==127)
    	  {
    	    char *foo = p->linenumbers + 1;
    	    int len = get_small_number(&foo);
    	    int shift = *foo;
    	    char *fname = ++foo;
    	    foo += len << shift;
    	    get_small_number(&foo); /* pc offset */
    	    /* FIXME: Dmalloc doesn't support wide filenames. */
    	    debug_malloc_name(p, fname, get_small_number(&foo));
    	  }
    #endif
    
    
    	  debug_malloc_touch(p);
    	  for(d=0;d<p->num_identifier_index;d++)
    	  {
    	    decode_number(p->identifier_index[d],data);
    	    if(p->identifier_index[d] > p->num_identifier_references)
    	    {
    	      p->identifier_index[d]=0;
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, NULL, "Malformed program in decode.\n");
    	    }
    	  }
    
    	  debug_malloc_touch(p);
    	  for(d=0;d<p->num_variable_index;d++)
    	  {
    	    decode_number(p->variable_index[d],data);
    	    if(p->variable_index[d] > p->num_identifiers)
    	    {
    	      p->variable_index[d]=0;
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, NULL, "Malformed program in decode.\n");
    	    }
    	  }
    
    	  debug_malloc_touch(p);
    	  for(d=0;d<p->num_identifier_references;d++)
    	  {
    	    decode_number(p->identifier_references[d].inherit_offset,data);
    	    if(p->identifier_references[d].inherit_offset > p->num_inherits)
    	    {
    	      p->identifier_references[d].inherit_offset=0;
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, NULL, "Malformed program in decode.\n");
    	    }
    	    decode_number(p->identifier_references[d].identifier_offset,data);
    	    decode_number(p->identifier_references[d].id_flags,data);
    
    	    EDB(3,fprintf(stderr,"IDREF%x < %d: { %d, %d, %d }\n",
    			p->id,d,
    			p->identifier_references[d].inherit_offset,
    			p->identifier_references[d].identifier_offset,
    			p->identifier_references[d].id_flags); );
    	  }
    
    	  debug_malloc_touch(p);
    	  for(d=0;d<p->num_strings;d++)
    	    getdata(p->strings[d]);
    
    	  debug_malloc_touch(p);
    	  debug_malloc_touch(dat);
    
    /*	  p->inherits[0].prog=p;
    	  p->inherits[0].parent_offset=1;
    */
    
    	  if(placeholder && data->pass==1)
    	  {
    	    if(placeholder->prog != null_program)
    	    {
    	      debug_malloc_touch(placeholder);
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, NULL,
    			   "Placeholder is no longer a __null_program clone.\n");
    	    }else{
    	      free_program(placeholder->prog);
    	      add_ref(placeholder->prog = p);
    	      debug_malloc_touch(placeholder);
    	    }
    	  }
    
    	  debug_malloc_touch(p);
    
    	  in=p->num_inherits;
    	  for(d=0;d<in;d++)
    	  {
    	    decode_number(p->inherits[d].inherit_level,data);
    	    decode_number(p->inherits[d].identifier_level,data);
    	    decode_number(p->inherits[d].parent_offset,data);
    	    decode_number(p->inherits[d].parent_identifier,data);
    	    decode_number(p->inherits[d].storage_offset,data);
    
    	    decode_value2(data);
    	    if(d==0)
    	    {
    	      if(Pike_sp[-1].type != T_PROGRAM ||
    		 Pike_sp[-1].u.program != p) {
    		ref_push_program (p);
    		decode_error(Pike_sp - 1, Pike_sp - 2,
    			     "Program decode of self inherit failed. Got: ");
    	      }
    	      sub_ref(p);
    	    }
    
    	    if(data->pass > 1)
    	    {
    	      if(p->inherits[d].prog)
    	      {
    		free_program(p->inherits[d].prog);
    		p->inherits[d].prog=0;
    	      }
    
    	      if(p->inherits[d].parent)
    	      {
    		free_object(p->inherits[d].parent);
    		p->inherits[d].parent=0;
    	      }
    	    }
    
    	    switch(Pike_sp[-1].type)
    	    {
    	      case T_PROGRAM:
    		EDB(3, fprintf(stderr,"INHERIT%x = prog\n",p->id); );
    		p->inherits[d].prog=Pike_sp[-1].u.program;
    		Pike_sp--;
    		dmalloc_touch_svalue(Pike_sp);
    		break;
    
    	      case T_FUNCTION:
    		if(Pike_sp[-1].subtype != FUNCTION_BUILTIN) {
    		  EDB(3, fprintf(stderr,"INHERIT%x = func { %p, %d} \n",p->id,Pike_sp[-1].u.object, Pike_sp[-1].subtype); );
    
    		  p->inherits[d].parent_identifier=Pike_sp[-1].subtype;
    		  p->inherits[d].prog=program_from_svalue(Pike_sp-1);
    		  if(!p->inherits[d].prog) {
    		    ref_push_program (p);
    		    decode_error(Pike_sp - 1, Pike_sp - 2,
    				 "Failed to decode inherited program. Got: ");
    		  }
    		  add_ref(p->inherits[d].prog);
    		  p->inherits[d].parent=Pike_sp[-1].u.object;
    		  Pike_sp--;
    		  dmalloc_touch_svalue(Pike_sp);
    		  break;
    		}
    		/* Fall through */
    
    	      default:
    		ref_push_program (p);
    		decode_error(Pike_sp - 1, Pike_sp - 2,
    			     "Failed to decode inherited program. Got: ");
    	    }
    
    	    p->num_inherits=d+1;
    
    	    getdata3(p->inherits[d].name);
    
    	    EDB(3, fprintf(stderr,"INHERIT%x < %d: %d id=%d\n",
    			 p->id,d,
    			 p->inherits[d].prog->num_identifiers,
    			 p->inherits[d].prog->id); );
    	  }
    
    	  debug_malloc_touch(dat);
    
    
    	  SET_ONERROR(err1, restore_type_stack, Pike_compiler->type_stackp);
    	  SET_ONERROR(err2, restore_type_mark, Pike_compiler->pike_type_mark_stackp);
    
    	  debug_malloc_touch(p);
    	  for(d=0;d<p->num_identifiers;d++)
    	  {
    	    getdata(p->identifiers[d].name);
    	    decode_type(p->identifiers[d].type,data);
    	    decode_number(p->identifiers[d].identifier_flags,data);
    	    decode_number(p->identifiers[d].run_time_type,data);
    	    decode_number(p->identifiers[d].opt_flags,data);
    	    if (!IDENTIFIER_IS_C_FUNCTION(p->identifiers[d].identifier_flags))
    	    {
    	      decode_number(p->identifiers[d].func.offset,data);
    	    } else {
    	      ref_push_program (p);
    	      ref_push_string (p->identifiers[d].name);
    	      decode_error(Pike_sp - 1, Pike_sp - 2,
    			   "Cannot decode function implemented in C: ");
    	    }
    	  }
    
    
    	  UNSET_ONERROR(err2);
    	  UNSET_ONERROR(err1);
    
    	  debug_malloc_touch(dat);
    
    	  debug_malloc_touch(p);
    	  for(d=0;d<NUM_LFUNS;d++)
    	    decode_number(p->lfuns[d],data);
    
    	  debug_malloc_touch(dat);
    
    	  debug_malloc_touch(p);
    
    	  fsort_program_identifier_index(p->identifier_index,
    					 p->identifier_index +
    					 p->num_identifier_index - 1,
    					 p);
    
    	  debug_malloc_touch(dat);
    	  debug_malloc_touch(p);
    
    	  p->flags |= PROGRAM_PASS_1_DONE | PROGRAM_FIXED;
    	  for(d=0;d<p->num_constants;d++)
    	  {
    	    decode_value2(data);
    	    if(data->pass > 1)
    	    {
    	      assign_svalue(& p->constants[d].sval , Pike_sp -1 );
    	      pop_stack();
    	    }else{
    	      dmalloc_touch_svalue(Pike_sp-1);
    	      p->constants[d].sval=*--Pike_sp;
    	    }
    	    dmalloc_touch_svalue(Pike_sp);
    	    getdata3(p->constants[d].name);
    	  }
    
    #ifdef PIKE_DEBUG	  
    	  {
    	    int q;
    	    for(q=0;q<p->num_inherits;q++)
    	      if(!p->inherits[q].prog)
    		Pike_fatal("FOOBAR!@!!!\n");
    	  }
    #endif
    
    	  if(placeholder && data->pass == 1)
    	  {
    	    if(placeholder->storage)
    	    {
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, NULL, "Placeholder already has storage!\n");
    	    } else {
    	      placeholder->storage=p->storage_needed ?
    		(char *)xalloc(p->storage_needed) :
    		(char *)NULL;
    	      call_c_initializers(placeholder);
    	    }
    	  }
    	  
    	  data->pickyness--;
    
    	  if(placeholder)
    	  {
    	    free_object(placeholder);
    	    UNSET_ONERROR(err4);
    	  }
    	  UNSET_ONERROR(err3);
    
    	  ref_push_program(p);
    
    	  if(!(p->flags & PROGRAM_FINISHED) &&
    	     !data->supporter.depends_on)
    	  {
    	    /* Logic for the PROGRAM_FINISHED flag:
    	     * The purpose of this code is to make sure that the PROGRAM_FINISHED
    	     * flag is not set on the program until all inherited programs also
    	     * have that flag. -Hubbe
    	     */
    	    for(d=1;d<p->num_inherits;d++)
    	      if(! (p->inherits[d].prog->flags & PROGRAM_FINISHED))
    		break;
    	    
    	    if(d == p->num_inherits)
    	    {
    	      p->flags &=~ PROGRAM_AVOID_CHECK;
    	      p->flags |= PROGRAM_FINISHED;
    
    	      if (placeholder)
    	      {
    		if(!init_placeholder(placeholder))
    		  placeholder=0;
    	      }
    	      
    	      /* Go through the linked list of unfinished programs
    	       * to see what programs are now finished.
    	       */
    	      {
    		struct unfinished_prog_link *l, **ptr;
    		
    #ifdef PIKE_DEBUG
    		check_program(p);
    #endif /* PIKE_DEBUG */
    		
    		/* It is possible that we need to restart loop
    		 * in some cases... /Hubbe
    		 */
    		for(ptr= &data->unfinished_programs ; (l=*ptr);)
    		{
    		  struct program *pp=l->prog;
    		  for(d=1;d<pp->num_inherits;d++)
    		    if(! (pp->inherits[d].prog->flags & PROGRAM_FINISHED))
    		      break;
    		  
    		  if(d == pp->num_inherits)
    		  {
    		    fsort_program_identifier_index(pp->identifier_index,
    						   pp->identifier_index +
    						   pp->num_identifier_index - 1,
    						   pp);
    
    		    pp->flags &=~ PROGRAM_AVOID_CHECK;
    		    pp->flags |= PROGRAM_FINISHED;
    		    
    #ifdef PIKE_DEBUG
    		    check_program(pp);
    #endif /* PIKE_DEBUG */
    		    
    		    *ptr = l->next;
    		    free((char *)l);
    		  }else{
    		    ptr=&l->next;
    		  }
    		}
    	      }
    	      
    	      /* Go through the linked list of unfinished objects
    	       * to see what objects are now finished.
    	       */
    	      {
    		struct unfinished_obj_link *l, **ptr;
    		for(ptr= &data->unfinished_objects ; (l=*ptr);)
    		{
    		  struct object *o=l->o;
    		  if(o->prog)
    		  {
    		    if(o->prog->flags & PROGRAM_FINISHED)
    		    {
    		      apply_lfun(o, LFUN___INIT, 0);
    		      pop_stack();
    		      /* FIXME: Should call LFUN_CREATE here in <= 7.2
    		       * compatibility mode. */
    		    }else{
    		      ptr=&l->next;
    		      continue;
    		    }
    		  }
    		  *ptr = l->next;
    		  free((char *)l);
    		}
    	      }
    	    }else{
    	      struct unfinished_prog_link *l;
    	      l=ALLOC_STRUCT(unfinished_prog_link);
    	      l->prog=p;
    	      l->next=data->unfinished_programs;
    	      data->unfinished_programs=l;
    	    }
    	  }
    
    #ifdef _REENTRANT
    	  UNSET_ONERROR(err);
    	  exit_threads_disable(NULL);
    #endif
    	  goto decode_done;
    	}
    
    	case 2:
    	  decode_value2(data);
    	  decode_value2(data);
    	  if(Pike_sp[-2].type==T_INT)
    	  {
    	    pop_stack();
    	  }else{
    	    f_arrow(2);
    	  }
    	  if(Pike_sp[-1].type != T_PROGRAM && data->pickyness)
    	    decode_error(NULL, Pike_sp - 1, "Failed to decode program. Got: ");
    	  break;
    
            case 3:
    	  decode_value2(data);
    	  if ((Pike_sp[-1].type == T_INT) &&
    	      (Pike_sp[-1].u.integer < PROG_DYNAMIC_ID_START) &&
    	      (Pike_sp[-1].u.integer > 0)) {
    	    struct program *p = id_to_program(Pike_sp[-1].u.integer);
    	    if (!p) {
    	      Pike_error("Failed to get program from ID %"PRINTPIKEINT"d\n",
    			 Pike_sp[-1].u.integer);
    	    }
    	    pop_stack();
    	    ref_push_program(p);
    	  } else {
    	    decode_error(NULL, Pike_sp - 1,
    			 "Failed to decode program by ID. Expected integer, got: ");
    	  }
    	  break;
    
    	case 5: {		/* Forward reference for new-style encoding. */
    	  struct program *p = low_allocate_program();
    
    	  push_program (p);
    	  EDB(2,
    	      fprintf (stderr, "%*sInited an embryo for a delay encoded program "
    		       "to <%d>: ",
    		       data->depth, "", entry_id.u.integer);
    	      print_svalue (stderr, Pike_sp - 1);
    	      fputc ('\n', stderr););
    
    #if 0
    	  /* Is this necessary? In that case, how do we pass an
    	   * adequate context to __register_new_program so that it
    	   * knows which program is being decoded? */
    	  if (data->codec) {
    	    ref_push_program (p);
    	    apply (data->codec, "__register_new_program", 1);
    	      
    	    /* Returns a placeholder. */
    	    if (Pike_sp[-1].type == T_OBJECT) {
    	      if (Pike_sp[-1].u.object->prog != null_program)
    		Pike_error ("Placeholder object is not a null_program clone.\n");
    	    }
    	    else if (Pike_sp[-1].type != T_INT ||
    		     Pike_sp[-1].u.integer)
    	      Pike_error ("Expected placeholder object or zero "
    			  "from __register_new_program.\n");
    	    pop_stack();
    	  }
    #endif
    
    	  break;
    	}
    
    	case 4:			/* New-style encoding. */
    	{
    	  struct program *p;
    	  ONERROR err;
    	  ONERROR err2;
    	  int orig_compilation_depth;
    	  int byteorder;
    	  int bytecode_method;
    	  int entry_type;
    	  INT16 id_flags;
    	  INT16 p_flags;
    	  INT32 old_pragmas = lex.pragmas;
    #define FOO(NUMTYPE,Y,ARGTYPE,NAME) \
              NUMTYPE PIKE_CONCAT(local_num_, NAME) = 0;
    #include "program_areas.h"
    
    #ifdef ENCODE_DEBUG
    	  data->depth += 2;
    #endif
    
    	  /* Decode byte-order. */
    	  decode_number(byteorder, data);
    
    	  EDB(4,
    	      fprintf(stderr, "%*sbyte order:%d\n",
    		      data->depth, "", byteorder));
    
    	  if ((byteorder != PIKE_BYTEORDER)
    #if (PIKE_BYTEORDER == 1234)
    	      && (byteorder != 4321)
    #else
    #if (PIKE_BYTEORDER == 4321)
    	      && (byteorder != 1234)
    #endif
    #endif
    	      ) {
    	    Pike_error("Unsupported byte-order. Native:%d Encoded:%d\n",
    		       PIKE_BYTEORDER, byteorder);
    	  }
    
    	  /* Decode flags. */
    	  decode_number(p_flags,data);
    	  p_flags &= ~(PROGRAM_FINISHED | PROGRAM_OPTIMIZED |
    		       PROGRAM_FIXED | PROGRAM_PASS_1_DONE);
    	  p_flags |= PROGRAM_AVOID_CHECK;
    
    	  if (delayed_enc_val) {
    	    EDB(2,fprintf(stderr, "%*sdecoding a delay encoded program: ",
    			  data->depth, "");
    		print_svalue(stderr, delayed_enc_val);
    		fputc('\n', stderr););
    	    if (delayed_enc_val->type != T_PROGRAM ||
    		delayed_enc_val->u.program->flags != PROGRAM_VIRGIN) {
    	      decode_error (NULL, delayed_enc_val,
    			    "Didn't get program embryo "
    			    "for delay encoded program <%"PRINTPIKEINT"d>: ",
    			    entry_id.u.integer);
    	    }
    	    /* No new ref here; low_start_new_program will add one for
    	     * Pike_compiler->new_program and we want ride on that one
    	     * just like when it's created there. */
    	    p = delayed_enc_val->u.program;
    	  }
    	  else
    	    p = NULL;
    
    	  /* We don't want to be affected by #pragma save_parent or
    	   * __pragma_save_parent__.
    	   */
    	  lex.pragmas = (old_pragmas & ~ID_SAVE_PARENT)|ID_DONT_SAVE_PARENT;
    	  SET_ONERROR(err2, set_lex_pragmas, old_pragmas);
    
    	  /* Start the new program. */
    	  orig_compilation_depth = compilation_depth;
    	  compilation_depth = -1;
    	  low_start_new_program(p, 1, NULL, 0, NULL);
    	  p = Pike_compiler->new_program;
    
    	  p->flags = p_flags;
    
    	  /* Kludge to get end_first_pass() to free the program. */
    	  Pike_compiler->num_parse_error++;
    
    	  SET_ONERROR(err, cleanup_new_program_decode, &orig_compilation_depth);
    
    	  debug_malloc_touch(p);
    
    	  if (!delayed_enc_val) {
    	    struct svalue prog;
    	    prog.type=T_PROGRAM;
    	    prog.u.program=p;
    	    EDB(2,fprintf(stderr, "%*sDecoding a program to <%d>: ",
    			  data->depth, "", entry_id.u.integer);
    		print_svalue(stderr, &prog);
    		fputc('\n', stderr););
    	    mapping_insert(data->decoded, &entry_id, &prog);
    	  }
    
    	  debug_malloc_touch(p);
    
    	  /* Check the version. */
    	  decode_value2(data);
    	  f_version(0);
    	  if(!is_eq(Pike_sp-1,Pike_sp-2))
    	    Pike_error("Cannot decode programs encoded with other pike version.\n");
    	  pop_n_elems(2);
    
    	  debug_malloc_touch(p);
    
    	  data->pickyness++;
    
    	  /* parent */
    	  decode_value2(data);
    	  if (Pike_sp[-1].type == T_PROGRAM) {
    	    p->parent = Pike_sp[-1].u.program;
    	  } else if ((Pike_sp[-1].type == T_INT) &&
    		     (!Pike_sp[-1].u.integer)) {
    	    p->parent = NULL;
    	  } else {
    	    Pike_error("Bad type for parent program (%s)\n",
    		       get_name_of_type(Pike_sp[-1].type));
    	  }
    	  dmalloc_touch_svalue(Pike_sp-1);
    	  Pike_sp--;
    
    	  /* Decode lengths. */
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME) \
    	  decode_number(PIKE_CONCAT(local_num_, NAME), data);
    #include "program_areas.h"
    
    	  /* Byte-code method */
    	  decode_number(bytecode_method, data);
    	  if (bytecode_method == PIKE_BYTECODE_PORTABLE) {
    	  } else if (bytecode_method != PIKE_BYTECODE_METHOD) {
    	    Pike_error("Unsupported byte-code method: %d\n", bytecode_method);
    	  } else {
    
    #ifdef PIKE_USE_MACHINE_CODE
    	    {
    	      size_t csum;
    	      /* Check the checksum of the instrs array. */
    	      decode_number(csum, data);
    	      if (csum != instrs_checksum) {
    		Pike_error("Bad instruction checksum: %d (expected %d)\n",
    			   csum, instrs_checksum);
    	      }	    
    	    }
    #endif /* PIKE_USE_MACHINE_CODE */
    
    	    /* Decode program */
    	    if (data->ptr + (int)local_num_program >= data->len) {
    	      Pike_error("Failed to decode program. (string too short)\n");
    	    }
    	    for (e=0; e<(int)local_num_program; e++) {
    	      PIKE_OPCODE_T opcode;
    	      MEMCPY(&opcode, data->data + data->ptr, sizeof(PIKE_OPCODE_T));
    	      data->ptr += sizeof(PIKE_OPCODE_T);
    	      add_to_program(opcode);
    	    }
    
    	    /* Decode relocations */
    	    for (e=0; e<(int)local_num_relocations; e++) {
    	      size_t reloc;
    	      decode_number(reloc, data);
    	      CHECK_RELOC(reloc, local_num_program);
    	      add_to_relocations(reloc);
    	    }
    
    	    /* Perform relocation. */
    #ifdef DECODE_PROGRAM
    	    DECODE_PROGRAM(p);
    #endif /* DECODE_PROGRAM */
    	    make_program_executable(p);
    
    	    /* Decode linenumbers */
    	    if (data->ptr + (int)local_num_linenumbers >= data->len) {
    	      Pike_error("Failed to decode linenumbers. (string too short)\n");
    	    }
    	    for (e=0; e<(int)local_num_linenumbers; e++) {
    	      char lineno_info;
    	      lineno_info = *(data->data + data->ptr++);
    	      add_to_linenumbers(lineno_info);
    	    }
    
    	    /* Now with the linenumber info in place it gets useful to
    	     * include the program in error messages. */
    
    	    EDB(2,
    		fprintf(stderr, "%*sThe program is: ", data->depth, "");
    		push_program (p);
    		print_svalue (stderr, --Pike_sp);
    		fputc('\n', stderr));
    	  }
    
    	  /* identifier_index & variable_index are created by
    	   * fixate_program() and optimize_program().
    	   */
    
    	  /* Decode strings */
    	  for (e=0; e<local_num_strings; e++) {
    	    decode_value2(data);
    	    if (Pike_sp[-1].type != T_STRING) {
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, Pike_sp - 2,
    			   "Nonstrings in string table: ");
    	    }
    	    add_to_strings(Pike_sp[-1].u.string);
    	    dmalloc_touch_svalue(Pike_sp-1);
    	    Pike_sp--;
    	  }
    
    	  /* First pass constants.
    	   *
    	   * These will be replaced later on.
    	   */
    	  {
    	    struct program_constant constant;
    	    constant.name = NULL;
    	    constant.sval.type = T_INT;
    	    constant.sval.subtype = NUMBER_UNDEFINED;
    	    constant.sval.u.integer = 0;
    
    	    for(e=0;e<local_num_constants;e++) {
    	      add_to_constants(constant);
    	    }
    	  }
    
    	  /* Decode identifier_references, inherits and identifiers. */
    	  decode_number(entry_type, data);
    	  EDB(4,
    	      fprintf(stderr, "%*sDecoding identifier references.\n",
    		      data->depth, ""));
    #ifdef ENCODE_DEBUG
    	  data->depth+=2;
    #endif
    	  while (entry_type == ID_ENTRY_EFUN_CONSTANT) {
    	    INT32 efun_no;
    	    struct program_constant *constant;
    	    decode_number(efun_no, data);
    	    EDB(2,
    		fprintf(stderr, "%*sDecoding efun constant #%d.\n",
    			data->depth, "", efun_no));
    	    if ((efun_no < 0) || (efun_no >= local_num_constants)) {
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, NULL,
    			   "Bad efun number: %d (expected 0 - %d).\n",
    			   efun_no, local_num_constants-1);	      
    	    }
    	    constant = p->constants+efun_no;
    	    /* value */
    	    decode_value2(data);
    	    if ((Pike_sp[-1].type != T_FUNCTION) ||
    		(Pike_sp[-1].subtype != FUNCTION_BUILTIN)) {
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, Pike_sp - 2,
    			   "Expected efun constant: ");
    	    }
    	    /* name */
    	    decode_value2(data);
    	    if (Pike_sp[-1].type == T_STRING) {
    	      constant->name = Pike_sp[-1].u.string;
    	    } else if ((Pike_sp[-1].type == T_INT) &&
    		       !Pike_sp[-1].u.integer) {
    	      constant->name = NULL;
    	    } else {
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, Pike_sp - 2,
    			   "Name of constant is not a string: ");
    	    }
    	    constant->sval = Pike_sp[-2];
    	    dmalloc_touch_svalue(Pike_sp-1);
    	    dmalloc_touch_svalue(Pike_sp-2);
    	    Pike_sp -= 2;
    	    decode_number(entry_type, data);
    	  }
    	  while (entry_type != ID_ENTRY_EOT) {
    	    decode_number(id_flags, data);
    	    switch(entry_type) {
    	    case ID_ENTRY_RAW:
    	      {
    		int no;
    		int ref_no;
    		struct reference ref;
    
    		/* id_flags */
    		ref.id_flags = id_flags;
    
    		/* inherit_offset */
    		decode_number(ref.inherit_offset, data);
    
    		/* identifier_offset */
    		/* Actually the id ref number from the inherited program */
    		decode_number(ref_no, data);
    		ref.identifier_offset = p->inherits[ref.inherit_offset].prog->
    		  identifier_references[ref_no].identifier_offset;
    
    		/* Expected identifier reference number */
    		decode_number(no, data);
    
    		if (no > p->num_identifier_references) {
    		  EDB (3, dump_program_tables (p, data->depth));
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, NULL,
    			       "Bad identifier reference offset: %d != %d\n", no,
    			       Pike_compiler->new_program->
    			       num_identifier_references);
    		} else if (no == p->num_identifier_references) {
    		  add_to_identifier_references(ref);
    		}
    		else {
    		  p->identifier_references[no] = ref;
    		}
    	      }
    	      break;
    
    	    case ID_ENTRY_VARIABLE:
    	      {
    		int no, n;
    
    		/* name */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_STRING) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad variable name (not a string): ");
    		}
    
    		/* type */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_TYPE) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad variable type (not a type): ");
    		}
    
    		/* Expected identifier offset */
    		decode_number(no, data);
    
    		EDB(5,
    		    fprintf(stderr,
    			    "%*sdefine_variable(\"%s\", X, 0x%04x)\n",
    			    data->depth, "",
    			    Pike_sp[-2].u.string->str, id_flags));
    
    		/* Alters
    		 *
    		 * storage, variable_index, identifiers and
    		 * identifier_references
    		 */
    		n = define_variable(Pike_sp[-2].u.string,
    				    Pike_sp[-1].u.type,
    				    id_flags);
    		if (no != n) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, NULL,
    			       "Bad variable identifier offset: got %d, expected %d\n",
    			       n, no);
    		}
    
    		pop_n_elems(2);
    	      }
    	      break;
    	    case ID_ENTRY_FUNCTION:
    	      {
    		union idptr func;
    		unsigned INT8 func_flags;
    		unsigned INT16 opt_flags;
    		int no;
    		int n;
    
    		/* name */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_STRING) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad function name (not a string): ");
    		}
    
    		/* type */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_TYPE) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad function type (not a type): ");
    		}
    
    		/* func_flags (aka identifier_flags) */
    		decode_number(func_flags, data);
    
    		/* func */
    		decode_number(func.offset, data);
    		if (bytecode_method == PIKE_BYTECODE_PORTABLE &&
    		    func.offset != -1) {
    #ifdef ENCODE_DEBUG
    		  int old_a_flag;
    #endif
    		  EDB(2,
    		  {
    		    fprintf(stderr, "%*sDecoding portable bytecode.\n",
    			    data->depth, "");
    		    old_a_flag = a_flag;
    		    a_flag = (a_flag > (data->debug-1))?a_flag:(data->debug-1);
    		  });
    		  func.offset = decode_portable_bytecode(func.offset);
    		  EDB(2, a_flag = old_a_flag);
    		}
    
    		/* opt_flags */
    		decode_number(opt_flags, data);
    
    		/* FIXME:
    		 *   Verify validity of func_flags, func.offset & opt_flags
    		 */
    
    		/* Expected identifier offset */
    		decode_number(no, data);
    
    		EDB(5, {
    		  INT32 line;
    		  struct pike_string *file =
    		    get_line(func.offset + p->program, p, &line);
    		  fprintf(stderr,
    			  "%*sdefine_function(\"%s\", X, 0x%04x, 0x%04x,\n"
    			  "%*s                0x%04x, 0x%04x)\n"
    			  "%*s    @ %s:%d\n",
    			  data->depth, "",
    			  Pike_sp[-2].u.string->str, id_flags, func_flags,
    			  data->depth, "",
    			  func.offset, opt_flags,
    			  data->depth, "",
    			  file->str, line);
    		});
    
    		/* Alters
    		 *
    		 * identifiers, identifier_references
    		 */
    		n = define_function(Pike_sp[-2].u.string,
    				    Pike_sp[-1].u.type,
    				    id_flags, func_flags,
    				    &func, opt_flags);
    		if (no != n &&
    		    (p->identifier_references[no].id_flags != id_flags ||
    		     p->identifier_references[no].identifier_offset !=
    		     p->identifier_references[n].identifier_offset ||
    		     p->identifier_references[no].inherit_offset != 0)) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, NULL,
    			       "Bad function identifier offset: %d\n", no);
    		}
    
    		pop_n_elems(2);
    	      }
    	      break;
    	    case ID_ENTRY_CONSTANT:
    	      {
    		struct identifier id;
    		struct reference ref;
    		int no;
    		int n;
    
    		/* name */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_STRING) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad constant name (not a string): ");
    		}
    		id.name = Pike_sp[-1].u.string;
    
    		/* identifier_flags */
    		id.identifier_flags = IDENTIFIER_CONSTANT;
    
    		/* offset */
    		decode_number(id.func.offset, data);
    
    		/* FIXME:
    		 *   Verify validity of func.offset
    		 */
    
    		/* type */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_TYPE) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad constant type (not a type): ");
    		}
    		id.type = Pike_sp[-1].u.type;
    
    		/* run_time_type */
    		decode_number(id.run_time_type, data);
    
    		/* Expected identifier number. */
    		decode_number(no, data);
    
    		n = isidentifier(id.name);
    
    #ifdef PROFILING
    		id.self_time=0;
    		id.num_calls=0;
    		id.total_time=0;
    #endif
    
    		/* id_flags */
    		ref.id_flags = id_flags;
    
    		/* identifier_offset */
    		ref.identifier_offset =
    		  Pike_compiler->new_program->num_identifiers;
    
    		/* ref.inherit_offset */
    		ref.inherit_offset = 0;
    
    		EDB(5,
    		    fprintf(stderr,
    			    "%*sdefining constant(\"%s\", X, 0x%04x)\n",
    			    data->depth, "",
    			    Pike_sp[-2].u.string->str, id_flags));
    
    		/* Alters
    		 *
    		 * identifiers, identifier_references
    		 */
    
    		if (n < 0 || (n = override_identifier (&ref, id.name)) < 0) {
    		  n = p->num_identifier_references;
    		  add_to_identifier_references(ref);
    		}
    
    		if (no != n) {
    		  ref_push_program (p);
    		  ref_push_string (id.name);
    		  decode_error(Pike_sp - 2, Pike_sp - 1,
    			       "Bad function identifier offset "
    			       "(expected %d, got %d) for ", no, n);
    		}
    
    		add_to_identifiers(id);
    		dmalloc_touch_svalue(Pike_sp-1);
    		dmalloc_touch_svalue(Pike_sp-2);
    		Pike_sp -= 2;
    	      }
    	      break;
    	    case ID_ENTRY_INHERIT:
    	      {
    		struct program *prog;
    		struct object *parent = NULL;
    		int parent_identifier;
    		int parent_offset;
    		struct pike_string *name = NULL;
    		int no;
    
    		decode_number(no, data);
    		if (no !=
    		    Pike_compiler->new_program->num_identifier_references) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, NULL,
    			       "Bad inherit identifier offset: %d\n", no);
    		}
    
    		/* name */
    		decode_value2(data);
    		if (Pike_sp[-1].type == T_STRING) {
    		  name = Pike_sp[-1].u.string;
    		} else if ((Pike_sp[-1].type != T_INT) ||
    			   Pike_sp[-1].u.integer) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad inherit name (not a string): ");
    		}
    
    		/* prog */
    		decode_value2(data);
    		if (Pike_sp[-1].type != T_PROGRAM) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad inherit: Expected program, got ");
    		}
    		prog = Pike_sp[-1].u.program;
    		if (prog == placeholder_program) {
    		  ref_push_program (p);
    		  decode_error (Pike_sp - 1, NULL,
    				"Trying to inherit placeholder program "
    				"(resolver or codec problem).\n");
    		}
    		if(!(prog->flags & (PROGRAM_FINISHED | PROGRAM_PASS_1_DONE))) {
    		  ref_push_program (p);
    		  decode_error (Pike_sp - 1, Pike_sp - 2,
    				"Cannot inherit a program which is not "
    				"fully compiled yet (resolver or codec problem):\n");
    		}
    
    		/* parent */
    		decode_value2(data);
    		if (Pike_sp[-1].type == T_OBJECT) {
    		  parent = Pike_sp[-1].u.object;
    		} else if ((Pike_sp[-1].type != T_INT) ||
    			   Pike_sp[-1].u.integer) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, Pike_sp - 2,
    			       "Bad inherit: Parent isn't an object: ");
    		}
    
    		/* parent_identifier */
    		decode_number(parent_identifier, data);
    
    		/* parent_offset */
    		decode_number(parent_offset, data);
    
    		/* Expected number of identifier references. */
    		decode_number(no, data);
    
    		if (prog->num_identifier_references != no) {
    		  ref_push_program (p);
    		  decode_error(Pike_sp - 1, NULL,
    			       "Bad number of identifiers in inherit: %d != %d\n",
    			       no, prog->num_identifier_references);
    		}
    
    		EDB(5,
    		    fprintf(stderr,
    			    "%*slow_inherit(..., \"%s\")\n",
    			    data->depth, "",
    			    name?name->str:"NULL"));
    
    		/* Alters
    		 *
    		 * storage, inherits and identifier_references
    		 */
    		low_inherit(prog, parent, parent_identifier,
    			    parent_offset + 42, id_flags, name);
    
    		pop_n_elems(3);
    	      }
    	      break;
    	    default:
    	      Pike_error("Unsupported id entry type: %d\n", entry_type);
    	    }
    	    decode_number(entry_type, data);
    	  }
    
    #ifdef ENCODE_DEBUG
    	  data->depth-=2;
    #endif
    
    	  UNSET_ONERROR(err);
    
    	  /* De-kludge to get end_first_pass() to free the program. */
    	  Pike_compiler->num_parse_error--;
    
    	  p->flags |= PROGRAM_PASS_1_DONE;
    
    	  /* Fixate & optimize
    	   *
    	   * lfuns and identifier_index
    	   */
    	  ref_push_program (p);
    	  if (!(p = end_first_pass(2))) {
    	    decode_error(Pike_sp - 1, NULL, "Failed to decode program.\n");
    	  }
    	  pop_stack();
    	  compilation_depth = orig_compilation_depth;
    	  push_program(p);
    
    	  /* Restore lex.pragmas. */
    	  CALL_AND_UNSET_ONERROR(err2);
    
    	  EDB(5, dump_program_tables(p, data->depth));
    #ifdef PIKE_DEBUG
    	  check_program (p);
    #endif
    
    	  if (bytecode_method == PIKE_BYTECODE_PORTABLE) {
    	    /* We've regenerated p->program, so these may be off. */
    	    local_num_program = p->num_program;
    	    local_num_linenumbers = p->num_linenumbers;
    	  }
    
    	  /* Verify... */
    #define FOO(NUMTYPE,TYPE,ARGTYPE,NAME)					\
    	  if (PIKE_CONCAT(local_num_, NAME) != p->PIKE_CONCAT(num_,NAME)) { \
    	    ref_push_program (p);					\
    	    decode_error(Pike_sp - 1, NULL,				\
    			 "Value mismatch for num_" TOSTR(NAME) ": %d != %d\n", \
    			 PIKE_CONCAT(local_num_, NAME),			\
    			 p->PIKE_CONCAT(num_, NAME));			\
              }
    #include "program_areas.h"
    
    	  /* Decode the actual constants
    	   *
    	   * This must be done after the program has been ended.
    	   */
    	  for (e=0; e<local_num_constants; e++) {
    	    struct program_constant *constant = p->constants+e;
    	    if ((constant->sval.type != T_INT) ||
    		(constant->sval.subtype != NUMBER_UNDEFINED)) {
    	      /* Already initialized. */
    	      EDB(5,
    		  fprintf(stderr, "%*sskipping constant %d\n",
    			  data->depth, "", e));
    	      continue;
    	    }
    	    /* value */
    	    decode_value2(data);
    	    /* name */
    	    decode_value2(data);
    	    if (Pike_sp[-1].type == T_STRING) {
    	      constant->name = Pike_sp[-1].u.string;
    	    } else if ((Pike_sp[-1].type == T_INT) &&
    		       !Pike_sp[-1].u.integer) {
    	      constant->name = NULL;
    	    } else {
    	      ref_push_program (p);
    	      decode_error(Pike_sp - 1, Pike_sp - 2,
    			   "Name of constant is not a string: ");
    	    }
    	    constant->sval = Pike_sp[-2];
    	    dmalloc_touch_svalue(Pike_sp-1);
    	    dmalloc_touch_svalue(Pike_sp-2);
    	    Pike_sp -= 2;
    	    EDB(5,
    		fprintf(stderr, "%*sDecoded constant %d to a %s\n",
    			data->depth, "",
    			e, get_name_of_type(constant->sval.type)));
    	  }
    
    	  data->pickyness--;
    
    	  /* The program should be consistent now. */
    	  p->flags &= ~PROGRAM_AVOID_CHECK;
    
    	  EDB(5, fprintf(stderr, "%*sProgram flags: 0x%04x\n",
    			 data->depth, "", p->flags));
    
    #ifdef ENCODE_DEBUG
    	  data->depth -= 2;
    #endif
    	  goto decode_done;
    	}
    
    	default:
    	  Pike_error("Cannot decode program encoding type %d\n",num);
          }
          break;
    
      default:
        Pike_error("Failed to restore string. (Illegal type)\n");
      }
    
      mapping_insert(data->decoded, &entry_id, Pike_sp-1);
    
    decode_done:;
      EDB(2,fprintf(stderr, "%*sDecoded to <%d>: ", data->depth, "", entry_id.u.integer);
          print_svalue(stderr, Pike_sp-1);
          fputc('\n', stderr););
    #ifdef ENCODE_DEBUG
      data->depth -= 2;
    #endif
    }
    
    /* Placed after to prevent inlining */
    static int init_placeholder(struct object *placeholder)
    {
      JMP_BUF rec;
      /* Initialize the placeholder. */
      if(SETJMP(rec))
      {
        dmalloc_touch_svalue(&throw_value);
        call_handle_error();
        zap_placeholder(placeholder);
        UNSETJMP(rec);
        return 1;
      }else{
        call_pike_initializers(placeholder,0);
        UNSETJMP(rec);
        return 0;
      }
    }
    
    
    
    static struct decode_data *current_decode = NULL;
    
    static void free_decode_data(struct decode_data *data)
    {
      int delay;
    
      debug_malloc_touch(data);
    
      if (current_decode == data) {
        current_decode = data->next;
      } else {
        struct decode_data *d;
        for (d = current_decode; d; d=d->next) {
          if (d->next == data) {
    	d->next = d->next->next;
    	break;
          }
        }
    #ifdef PIKE_DEBUG
        if (!d) {
          Pike_fatal("Decode data fell off the stack!\n");
        }
    #endif /* PIKE_DEBUG */
      }
    
      
      delay=unlink_current_supporter(&data->supporter);
      call_dependants(& data->supporter, 1);
    
      if(delay)
      {
        debug_malloc_touch(data);
        /* We have been delayed */
        return;
      }
    
      free_mapping(data->decoded);
    
    #ifdef PIKE_DEBUG
      if(data->unfinished_programs)
        Pike_fatal("We have unfinished programs left in decode()!\n");
      if(data->unfinished_objects)
        Pike_fatal("We have unfinished objects left in decode()!\n");
    #endif
    
      while(data->unfinished_programs)
      {
        struct unfinished_prog_link *tmp=data->unfinished_programs;
        data->unfinished_programs=tmp->next;
        free((char *)tmp);
      }
    
      while(data->unfinished_objects)
      {
        struct unfinished_obj_link *tmp=data->unfinished_objects;
        data->unfinished_objects=tmp->next;
        free((char *)tmp);
      }
    #ifdef PIKE_THREADS
      data->thread_state = NULL;
    #endif
    
      free( (char *) data);
    }
    
    static void low_do_decode (struct decode_data *data)
    {
      int e;
      struct keypair *k;
      ONERROR err;
      SET_ONERROR(err, free_decode_data, data);
      current_decode = data;
    
      decode_value2(data);
    
      while (data->ptr < data->len) {
        decode_value2 (data);
        pop_stack();
      }
    
    #ifdef PIKE_DEBUG
      NEW_MAPPING_LOOP (data->decoded->data) {
        if (k->val.type == T_PROGRAM &&
    	!(k->val.u.program->flags & PROGRAM_FINISHED)) {
          decode_error (NULL, &k->val,
    		    "Got unfinished program <%"PRINTPIKEINT"d> after decode: ",
    		    k->ind.u.integer);
        }
      }
    #endif
    
      UNSET_ONERROR(err);
      free_decode_data(data);
    }
    
    /* Run pass2 */
    int re_decode(struct decode_data *data, int ignored)
    {
      data->next = current_decode;
      low_do_decode (data);
      return 1;
    }
    
    static INT32 my_decode(struct pike_string *tmp,
    		       struct object *codec
    #ifdef ENCODE_DEBUG
    		       , int debug
    #endif
    		      )
    {
      struct decode_data *data;
    
      /* Attempt to avoid infinite recursion on circular structures. */
      for (data = current_decode; data; data=data->next) {
        if (data->raw == tmp && data->codec == codec
    #ifdef PIKE_THREADS
    	&& data->thread_state == Pike_interpreter.thread_state
    #endif
           ) {
          struct svalue *res;
          struct svalue val = {
    	T_INT, NUMBER_NUMBER,
    #ifdef HAVE_UNION_INIT
    	{0},	/* Only to avoid warnings. */
    #endif /* HAVE_UNION_INIT */
          };
          val.u.integer = COUNTER_START;
          if ((res = low_mapping_lookup(data->decoded, &val))) {
    	push_svalue(res);
    	return 1;
          }
          /* Possible recursion detected. */
          /* return 0; */
        }
      }
    
      data=ALLOC_STRUCT(decode_data);
      data->counter.type=T_INT;
      data->counter.u.integer=COUNTER_START;
      data->data=(unsigned char *)tmp->str;
      data->len=tmp->len;
      data->ptr=0;
      data->codec=codec;
      data->pickyness=0;
      data->pass=1;
      data->unfinished_programs=0;
      data->unfinished_objects=0;
      data->raw = tmp;
      data->next = current_decode;
    #ifdef PIKE_THREADS
      data->thread_state = Pike_interpreter.thread_state;
    #endif
    #ifdef ENCODE_DEBUG
      data->debug = debug;
      data->depth = -2;
    #endif
    
      if (tmp->size_shift ||
          data->len < 5 ||
          GETC() != 182 ||
          GETC() != 'k' ||
          GETC() != 'e' ||
          GETC() != '0')
      {
        free( (char *) data);
        return 0;
      }
    
      data->decoded=allocate_mapping(128);
    
      init_supporter(& data->supporter,
    		 (supporter_callback *) re_decode,
    		 (void *)data);
    
      low_do_decode (data);
    
      return 1;
    }
    
    /* Compatibilidy decoder */
    
    static unsigned char extract_char(char **v, ptrdiff_t *l)
    {
      if(!*l) Pike_error("Format error, not enough place for char.\n");
      else (*l)--;
      (*v)++;
      return ((unsigned char *)(*v))[-1];
    }
    
    static ptrdiff_t extract_int(char **v, ptrdiff_t *l)
    {
      INT32 j;
      ptrdiff_t i;
    
      j=extract_char(v,l);
      if(j & 0x80) return (j & 0x7f);
    
      if((j & ~8) > 4)
        Pike_error("Format error: Error in format string, invalid integer.\n");
      i=0;
      while(j & 7) { i=(i<<8) | extract_char(v,l); j--; }
      if(j & 8) return -i;
      return i;
    }
    
    /*! @class MasterObject
     */
    
    /*! @decl inherit Codec
     *!
     *!   The master object is used as a fallback codec by @[encode_value()]
     *!   and @[decode_value()] if no codec was given.
     *!
     *!   It will also be used as a codec if @[decode_value()] encounters
     *!   old-style @[encode_value()]'ed data.
     */
    
    /*! @endclass
     */
    
    /*! @class Codec
     *!
     *!   Codec objects are used by @[encode_value()] and @[decode_value()]
     *!   to encode and decode objects, functions and programs.
     *!
     *! @note
     *!   @[encode_value()] and @[decode_value()] will use the current
     *!   master object as fallback codec object if no codec was specified.
     */
    
    /*! @decl mixed nameof(object|function|program x)
     *!
     *!   Called by @[encode_value()] to encode objects, functions and programs.
     *!
     *! @returns
     *!   Returns something encodable on success, typically a string.
     *!   The returned value will be passed to the corresponding
     *!   @[objectof()], @[functionof()] or @[programof()] by
     *!   @[decode_value()].
     *!
     *!   Returns @[UNDEFINED] on failure.
     *!
     *! @note
     *!   @[encode_value()] has fallbacks for some classes of objects,
     *!   functions and programs.
     *!
     *! @seealso
     *!   @[objectof()], @[functionof()], @[objectof()]
     */
    
    /*! @decl object objectof(string data)
     *!
     *!   Decode object encoded in @[data].
     *!
     *!   This function is called by @[decode_value()] when it encounters
     *!   encoded objects.
     *!
     *! @param data
     *!   Encoding of some object as specified by @[nameof()].
     *!
     *! @param minor
     *!   Minor version.
     *!
     *! @returns
     *!   Returns the decoded object.
     *!
     *! @seealso
     *!   @[functionof()], @[programof()]
     */
    
    /*! @decl function functionof(string data)
     *!
     *!   Decode function encoded in @[data].
     *!
     *!   This function is called by @[decode_value()] when it encounters
     *!   encoded functions.
     *!
     *! @param data
     *!   Encoding of some function as specified by @[nameof()].
     *!
     *! @param minor
     *!   Minor version.
     *!
     *! @returns
     *!   Returns the decoded function.
     *!
     *! @seealso
     *!   @[objectof()], @[programof()]
     */
    
    /*! @decl program programof(string data)
     *!
     *!   Decode program encoded in @[data].
     *!
     *!   This function is called by @[decode_value()] when it encounters
     *!   encoded programs.
     *!
     *! @param data
     *!   Encoding of some program as specified by @[nameof()].
     *!
     *! @param minor
     *!   Minor version.
     *!
     *! @returns
     *!   Returns the decoded program.
     *!
     *! @seealso
     *!   @[functionof()], @[objectof()]
     */
    
    /*! @decl object __register_new_program(program p)
     *!
     *!   Called by @[decode_value()] to register the program that is
     *!   being decoded. Might get called repeatedly with several other
     *!   programs that are being decoded recursively. The only safe
     *!   assumption is that when the top level thing being decoded is a
     *!   program, then the first call will be with the unfinished embryo
     *!   that will later become that program.
     *!
     *! @returns
     *!   Returns either zero or a placeholder object. A placeholder
     *!   object must be a clone of @[__null_program]. When the program is
     *!   finished, the placeholder object will be converted to a clone of
     *!   it. This is used for pike module objects.
     */
    
    /*! @endclass
     */
    
    static void rec_restore_value(char **v, ptrdiff_t *l)
    {
      ptrdiff_t t, i;
    
      i = extract_int(v,l);
      t = extract_int(v,l);
      switch(i)
      {
      case TAG_INT:
        push_int(DO_NOT_WARN(t));
        return;
    
      case TAG_FLOAT:
        if(sizeof(ptrdiff_t) < sizeof(FLOAT_TYPE))  /* FIXME FIXME FIXME FIXME */
          Pike_error("Float architecture not supported.\n");
        push_int(DO_NOT_WARN(t)); /* WARNING! */
        Pike_sp[-1].type = T_FLOAT;
        return;
    
      case TAG_TYPE:
        {
          Pike_error("Format error: TAG_TYPE not supported yet.\n");
        }
        return;
    
      case TAG_STRING:
        if(t<0) Pike_error("Format error: length of string is negative.\n");
        if(*l < t) Pike_error("Format error: string to short\n");
        push_string(make_shared_binary_string(*v, t));
        (*l)-= t;
        (*v)+= t;
        return;
    
      case TAG_ARRAY:
        if(t<0) Pike_error("Format error: length of array is negative.\n");
        check_stack(t);
        for(i=0;i<t;i++) rec_restore_value(v,l);
        f_aggregate(DO_NOT_WARN(t)); /* FIXME: Unbounded stack consumption. */
        return;
    
      case TAG_MULTISET:
        if(t<0) Pike_error("Format error: length of multiset is negative.\n");
        check_stack(t);
        for(i=0;i<t;i++) rec_restore_value(v,l);
        f_aggregate_multiset(DO_NOT_WARN(t)); /* FIXME: Unbounded stack consumption. */
        return;
    
      case TAG_MAPPING:
        if(t<0) Pike_error("Format error: length of mapping is negative.\n");
        check_stack(t*2);
        for(i=0;i<t;i++)
        {
          rec_restore_value(v,l);
          rec_restore_value(v,l);
        }
        f_aggregate_mapping(DO_NOT_WARN(t*2)); /* FIXME: Unbounded stack consumption. */
        return;
    
      case TAG_OBJECT:
        if(t<0) Pike_error("Format error: length of object is negative.\n");
        if(*l < t) Pike_error("Format error: string to short\n");
        push_string(make_shared_binary_string(*v, t));
        (*l) -= t; (*v) += t;
        APPLY_MASTER("objectof", 1);
        return;
    
      case TAG_FUNCTION:
        if(t<0) Pike_error("Format error: length of function is negative.\n");
        if(*l < t) Pike_error("Format error: string to short\n");
        push_string(make_shared_binary_string(*v, t));
        (*l) -= t; (*v) += t;
        APPLY_MASTER("functionof", 1);
        return;
    
      case TAG_PROGRAM:
        if(t<0) Pike_error("Format error: length of program is negative.\n");
        if(*l < t) Pike_error("Format error: string to short\n");
        push_string(make_shared_binary_string(*v, t));
        (*l) -= t; (*v) += t;
        APPLY_MASTER("programof", 1);
        return;
    
      default:
        Pike_error("Format error: Unknown type tag %ld:%ld\n",
    	  PTRDIFF_T_TO_LONG(i), PTRDIFF_T_TO_LONG(t));
      }
    }
    
    /*! @decl mixed decode_value(string coded_value, void|Codec codec)
     *!
     *! Decode a value from the string @[coded_value].
     *!
     *! This function takes a string created with @[encode_value()] or
     *! @[encode_value_canonic()] and converts it back to the value that was
     *! coded.
     *!
     *! If @[codec] is specified, it's used as the codec for the decode.
     *! If no codec is specified, the current master object will be used.
     *!
     *! @seealso
     *!   @[encode_value()], @[encode_value_canonic()]
     */
    void f_decode_value(INT32 args)
    {
      struct pike_string *s;
      struct object *codec;
    
    #ifdef ENCODE_DEBUG
      int debug = 0;
    #endif /* ENCODE_DEBUG */
    
      check_all_args("decode_value", args,
    		 BIT_STRING,
    		 BIT_VOID | BIT_OBJECT | BIT_ZERO,
    #ifdef ENCODE_DEBUG
    		 /* This argument is only an internal debug helper.
    		  * It's intentionally not part of the function
    		  * prototype, to keep the argument position free for
    		  * other uses in the future. */
    		 BIT_VOID | BIT_INT,
    #endif
    		 0);
    
      s = Pike_sp[-args].u.string;
    
      switch (args) {
        default:
    #ifdef ENCODE_DEBUG
          debug = Pike_sp[2-args].u.integer;
          /* Fall through. */
        case 2:
    #endif
          if (Pike_sp[1-args].type == T_OBJECT) {
    	codec = Pike_sp[1-args].u.object;
    	break;
          }
          /* Fall through. */
        case 1:
          codec = get_master();
          if (!codec) {
    	/* Use a dummy if there's no master around yet, to avoid checks. */
    	push_object (clone_object (null_program, 0));
    	args++;
    	codec = Pike_sp[-1].u.object;
          }
      }
    
      if(!my_decode(s, codec
    #ifdef ENCODE_DEBUG
    		, debug
    #endif
    	       ))
      {
        char *v=s->str;
        ptrdiff_t l=s->len;
        rec_restore_value(&v, &l);
      }
      assign_svalue(Pike_sp-args-1, Pike_sp-1);
      pop_n_elems(args);
    }