Newer
Older
*
* The aes/rijndael block cipher.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2000, 2001 Rafael R. Sevilla, Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
/* Originally written by Rafael R. Sevilla <dido@pacific.net.ph> */
#include "aes-internal.h"
#include "macros.h"
#endif
#if DEBUG
# include <stdio.h>
#endif
/* Get the byte with index 0, 1, 2 and 3 */
#define B0(x) ((x) & 0xff)
#define B1(x) (((x) >> 8) & 0xff)
#define B2(x) (((x) >> 16) & 0xff)
#define B3(x) (((x) >> 24) & 0xff)
/* Column j are the shifts used when computing t[j].
* Row i is says which byte is used */
#if AES_SMALL
static const unsigned idx[4][4] = {
{ 0, 1, 2, 3 },
{ 1, 2, 3, 0 },
{ 2, 3, 0, 1 },
{ 3, 0, 1, 2 } };
static const unsigned iidx[4][4] = {
{ 0, 1, 2, 3 },
{ 3, 0, 1, 2 },
{ 2, 3, 0, 1 },
{ 1, 2, 3, 0 } };
#endif /* AES_SMALL */
void
aes_encrypt(struct aes_ctx *ctx,
unsigned length, uint8_t *dst,
const uint8_t *src)
{
FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
{
uint32_t wtxt[4]; /* working ciphertext */
unsigned i;
unsigned round;
/* Get clear text, using little-endian byte order.
* Also XOR with the first subkey. */
for (i = 0; i<4; i++)
wtxt[i] = LE_READ_UINT32(src + 4*i) ^ ctx->keys[i];
for (round = 1; round < ctx->nrounds; round++)
{
uint32_t t[4];
unsigned j;
#if DEBUG
fprintf(stderr, "encrypt, round: %d\n wtxt: ", round);
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", wtxt[j]);
fprintf(stderr, "\n key: ");
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", ctx->keys[4*round + j]);
fprintf(stderr, "\n");
#endif
/* The row shift counts C1, C2 and C3 are (1, 2, 3) */
/* What's the best way to order this loop? Ideally,
* we'd want to keep both t and wtxt in registers. */
#if AES_SMALL
for (j=0; j<4; j++)
t[j] = dtable[0][ B0(wtxt[j]) ] ^
ROTRBYTE( dtable[0][ B1(wtxt[idx[1][j]]) ]^
ROTRBYTE( dtable[0][ B2(wtxt[idx[2][j]]) ] ^
ROTRBYTE(dtable[0][ B3(wtxt[idx[3][j]]) ])));
#else /* !AES_SMALL */
/* FIXME: Figure out how the indexing should really be done.
* It looks like this code shifts the rows in the wrong
* direction, but it passes the testsuite. */
t[0] = ( dtable[0][ B0(wtxt[0]) ]
^ dtable[1][ B1(wtxt[1]) ]
^ dtable[2][ B2(wtxt[2]) ]
^ dtable[3][ B3(wtxt[3]) ]);
t[1] = ( dtable[0][ B0(wtxt[1]) ]
^ dtable[1][ B1(wtxt[2]) ]
^ dtable[2][ B2(wtxt[3]) ]
^ dtable[3][ B3(wtxt[0]) ]);
t[2] = ( dtable[0][ B0(wtxt[2]) ]
^ dtable[1][ B1(wtxt[3]) ]
^ dtable[2][ B2(wtxt[0]) ]
^ dtable[3][ B3(wtxt[1]) ]);
t[3] = ( dtable[0][ B0(wtxt[3]) ]
^ dtable[1][ B1(wtxt[0]) ]
^ dtable[2][ B2(wtxt[1]) ]
^ dtable[3][ B3(wtxt[2]) ]);
#endif /* !AES_SMALL */
#if DEBUG
fprintf(stderr, "\n t: ");
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", t[j]);
fprintf(stderr, "\n");
#endif
for (j = 0; j<4; j++)
wtxt[j] = t[j] ^ ctx->keys[4*round + j];
}
/* Final round */
{
uint32_t cipher;
/* FIXME: Figure out how the indexing should really be done.
* It looks like this code shifts the rows in the wrong
* direction, but it passes the testsuite. */
cipher = ( (uint32_t) sbox[ B0(wtxt[0]) ]
| ((uint32_t) sbox[ B1(wtxt[1]) ] << 8)
| ((uint32_t) sbox[ B2(wtxt[2]) ] << 16)
| ((uint32_t) sbox[ B3(wtxt[3]) ] << 24));
#if DEBUG
fprintf(stderr, " t[0]: %x, key: %x\n",
cipher, ctx->keys[4*round]);
#endif
cipher ^= ctx->keys[4*round];
LE_WRITE_UINT32(dst, cipher);
cipher = ( (uint32_t) sbox[ B0(wtxt[1]) ]
| ((uint32_t) sbox[ B1(wtxt[2]) ] << 8)
| ((uint32_t) sbox[ B2(wtxt[3]) ] << 16)
| ((uint32_t) sbox[ B3(wtxt[0]) ] << 24));
#if DEBUG
fprintf(stderr, " t[1]: %x, key: %x\n",
cipher, ctx->keys[4*round + 1]);
#endif
cipher ^= ctx->keys[4*round + 1];
LE_WRITE_UINT32(dst + 4, cipher);
cipher = ( (uint32_t) sbox[ B0(wtxt[2]) ]
| ((uint32_t) sbox[ B1(wtxt[3]) ] << 8)
| ((uint32_t) sbox[ B2(wtxt[0]) ] << 16)
| ((uint32_t) sbox[ B3(wtxt[1]) ] << 24));
#if DEBUG
fprintf(stderr, " t[2]: %x, key: %x\n",
cipher, ctx->keys[4*round + 2]);
#endif
cipher ^= ctx->keys[4*round + 2];
LE_WRITE_UINT32(dst + 8, cipher);
cipher = ( (uint32_t) sbox[ B0(wtxt[3]) ]
| ((uint32_t) sbox[ B1(wtxt[0]) ] << 8)
| ((uint32_t) sbox[ B2(wtxt[1]) ] << 16)
| ((uint32_t) sbox[ B3(wtxt[2]) ] << 24));
#if DEBUG
fprintf(stderr, " t[3]: %x, key: %x\n",
cipher, ctx->keys[4*round + 3]);
#endif
cipher ^= ctx->keys[4*round + 3];
LE_WRITE_UINT32(dst + 12, cipher);
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#if 1
void
aes_decrypt(struct aes_ctx *ctx,
unsigned length, uint8_t *dst,
const uint8_t *src)
{
#if DEBUG
{
unsigned i, j;
fprintf(stderr, "subkeys:\n");
for (j = 0; j<=ctx->nrounds; j++)
{
printf(" %d: ", j);
for (i = 0; i<4; i++)
printf("%08x, ", ctx->ikeys[i + 4*j]);
printf("\n");
}
}
#endif
FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
{
uint32_t wtxt[4]; /* working ciphertext */
unsigned i;
unsigned round;
/* Get cipher text, using little-endian byte order.
* Also XOR with the first subkey. */
for (i = 0; i<4; i++)
wtxt[i] = LE_READ_UINT32(src + 4*i) ^ ctx->ikeys[i];
for (round = 1; round < ctx->nrounds; round++)
{
uint32_t t[4];
unsigned j;
#if DEBUG
fprintf(stderr, "decrypt, round: %d\n wtxt: ", round);
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", wtxt[j]);
fprintf(stderr, "\n key: ");
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", ctx->ikeys[4*round + j]);
fprintf(stderr, "\n");
#endif
/* The row shift counts C1, C2 and C3 are (1, 2, 3) */
/* What's the best way to order this loop? Ideally,
* we'd want to keep both t and wtxt in registers. */
#if AES_SMALL
for (j=0; j<4; j++)
t[j] = itable[0][ B0(wtxt[j]) ] ^
ROTRBYTE( itable[0][ B1(wtxt[iidx[1][j]]) ]^
ROTRBYTE( itable[0][ B2(wtxt[iidx[2][j]]) ] ^
ROTRBYTE(itable[0][ B3(wtxt[iidx[3][j]]) ])));
#else /* !AES_SMALL */
/* FIXME: Figure out how the indexing should really be done.
* It looks like this code shifts the rows in the wrong
* direction, but it passes the testsuite. */
t[0] = ( itable[0][ B0(wtxt[0]) ] /* 0 1 2 3 */
^ itable[1][ B1(wtxt[3]) ]
^ itable[2][ B2(wtxt[2]) ]
^ itable[3][ B3(wtxt[1]) ]);
t[1] = ( itable[0][ B0(wtxt[1]) ] /* 3 0 1 2 */
^ itable[1][ B1(wtxt[0]) ]
^ itable[2][ B2(wtxt[3]) ]
^ itable[3][ B3(wtxt[2]) ]);
t[2] = ( itable[0][ B0(wtxt[2]) ] /* 2 3 0 1 */
^ itable[1][ B1(wtxt[1]) ]
^ itable[2][ B2(wtxt[0]) ]
^ itable[3][ B3(wtxt[3]) ]);
t[3] = ( itable[0][ B0(wtxt[3]) ] /* 1 2 3 0 */
^ itable[1][ B1(wtxt[2]) ]
^ itable[2][ B2(wtxt[1]) ]
^ itable[3][ B3(wtxt[0]) ]);
#endif /* !AES_SMALL */
#if DEBUG
fprintf(stderr, " t: ");
for (j = 0; j<4; j++)
fprintf(stderr, "%08x, ", t[j]);
fprintf(stderr, "\n");
#endif
for (j = 0; j<4; j++)
wtxt[j] = t[j] ^ ctx->ikeys[4*round + j];
}
/* Final round */
{
uint32_t clear;
/* FIXME: Figure out how the indexing should really be done.
* It looks like this code shifts the rows in the wrong
* direction, but it passes the testsuite. */
clear = ( (uint32_t) isbox[ B0(wtxt[0]) ]
| ((uint32_t) isbox[ B1(wtxt[3]) ] << 8)
| ((uint32_t) isbox[ B2(wtxt[2]) ] << 16)
| ((uint32_t) isbox[ B3(wtxt[1]) ] << 24));
#if DEBUG
fprintf(stderr, " t[0]: %x, key: %x\n",
clear, ctx->ikeys[4*round]);
#endif
clear ^= ctx->ikeys[4*round];
LE_WRITE_UINT32(dst, clear);
clear = ( (uint32_t) isbox[ B0(wtxt[1]) ]
| ((uint32_t) isbox[ B1(wtxt[0]) ] << 8)
| ((uint32_t) isbox[ B2(wtxt[3]) ] << 16)
| ((uint32_t) isbox[ B3(wtxt[2]) ] << 24));
#if DEBUG
fprintf(stderr, " t[1]: %x, key: %x\n",
clear, ctx->ikeys[4*round + 1]);
#endif
clear ^= ctx->ikeys[4*round + 1];
LE_WRITE_UINT32(dst + 4, clear);
clear = ( (uint32_t) isbox[ B0(wtxt[2]) ]
| ((uint32_t) isbox[ B1(wtxt[1]) ] << 8)
| ((uint32_t) isbox[ B2(wtxt[0]) ] << 16)
| ((uint32_t) isbox[ B3(wtxt[3]) ] << 24));
#if DEBUG
fprintf(stderr, " t[2]: %x, key: %x\n",
clear, ctx->ikeys[4*round+2]);
#endif
clear ^= ctx->ikeys[4*round + 2];
LE_WRITE_UINT32(dst + 8, clear);
clear = ( (uint32_t) isbox[ B0(wtxt[3]) ]
| ((uint32_t) isbox[ B1(wtxt[2]) ] << 8)
| ((uint32_t) isbox[ B2(wtxt[1]) ] << 16)
| ((uint32_t) isbox[ B3(wtxt[0]) ] << 24));
#if DEBUG
fprintf(stderr, " t[3]: %x, key: %x\n",
clear, ctx->ikeys[4*round+3]);
#endif
clear ^= ctx->ikeys[4*round + 3];
LE_WRITE_UINT32(dst + 12, clear);
}
}
}
#else
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/* Key addition that also packs every byte in the key to a word rep. */
static void
key_addition_8to32(const uint8_t *txt, const uint32_t *keys, uint32_t *out)
{
const uint8_t *ptr;
unsigned i, j;
uint32_t val;
ptr = txt;
for (i=0; i<4; i++)
{
/* FIXME: Use the READ_UINT32 or LE_READ_UINT32 macro. */
val = 0;
for (j=0; j<4; j++)
val |= (*ptr++ << 8*j);
out[i] = keys[i]^val;
}
}
static void
key_addition32(const uint32_t *txt, const uint32_t *keys, uint32_t *out)
{
unsigned i;
for (i=0; i<4; i++)
out[i] = keys[i] ^ txt[i];
}
static void
key_addition32to8(const uint32_t *txt, const uint32_t *keys, uint8_t *out)
{
uint8_t *ptr;
unsigned i, j;
uint32_t val;
ptr = out;
for (i=0; i<4; i++)
{
/* FIXME: Use WRITE_UINT32 or LE_WRITE_UINT32 */
val = txt[i] ^ keys[i];
for (j=0; j<4; j++)
*ptr++ = (val >> 8*j) & 0xff;
}
}
void
aes_decrypt(struct aes_ctx *ctx,
unsigned length, uint8_t *dst,
const uint8_t *src)
{
unsigned r, j;
uint32_t wtxt[4], t[4]; /* working ciphertext */
uint32_t e;
assert(!(length % AES_BLOCK_SIZE));
for (; length;
length -= AES_BLOCK_SIZE, src += AES_BLOCK_SIZE, dst += AES_BLOCK_SIZE)
{
key_addition_8to32(src, ctx->ikeys + 4*ctx->nrounds, wtxt);
for (r=ctx->nrounds-1; r> 0; r--)
{
for (j=0; j<4; j++)
{
t[j] = itbl[wtxt[j] & 0xff] ^
ROTRBYTE(itbl[(wtxt[iidx[1][j]] >> 8) & 0xff]^
ROTRBYTE(itbl[(wtxt[iidx[2][j]] >> 16) & 0xff] ^
ROTRBYTE(itbl[(wtxt[iidx[3][j]] >> 24) & 0xff])));
}
key_addition32(t, ctx->ikeys + r*4, wtxt);
}
/* last round is special: there is no mixcolumn, so we can't use the big
tables. */
for (j=0; j<4; j++)
{
e = wtxt[j] & 0xff;
e |= (wtxt[iidx[1][j]]) & (0xff << 8);
e |= (wtxt[iidx[2][j]]) & (0xff << 16);
e |= (wtxt[iidx[3][j]]) & (0xff << 24);
t[j] = e;
}
for (j=0; j<4; j++)
t[j] = SUBBYTE(t[j], isbox);
key_addition32to8(t, ctx->ikeys, dst);
}
}