Skip to content
Snippets Groups Projects
aes.c 6.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • Niels Möller's avatar
    Niels Möller committed
    /* aes.c
    
    Niels Möller's avatar
    Niels Möller committed
     *
     * The aes/rijndael block cipher.
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2000, 2001 Rafael R. Sevilla, Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
    
    Niels Möller's avatar
    Niels Möller committed
     * The nettle library is distributed in the hope that it will be useful, but
    
    Niels Möller's avatar
    Niels Möller committed
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
    
    Niels Möller's avatar
    Niels Möller committed
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
    
    Niels Möller's avatar
    Niels Möller committed
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    /* Originally written by Rafael R. Sevilla <dido@pacific.net.ph> */
    
    
    Niels Möller's avatar
    Niels Möller committed
    
    
    Niels Möller's avatar
    Niels Möller committed
    #include <assert.h>
    
    
    #endif
    
    #if DEBUG
    # include <stdio.h>
    #endif
    
    /* Get the byte with index 0, 1, 2 and 3 */
    #define B0(x) ((x) & 0xff)
    #define B1(x) (((x) >> 8) & 0xff)
    #define B2(x) (((x) >> 16) & 0xff)
    #define B3(x) (((x) >> 24) & 0xff)
    
    
    /* Column j are the shifts used when computing t[j].
     * Row i is says which byte is used */
    
    
    /* FIXME: Figure out how the indexing should really be done. It looks
     * like this code shifts the rows in the wrong direction, but it
     * passes the testsuite. Perhaps the tables are rotated in the wrong
     * direction, but I don't think so. */
    
    /* The row shift counts C1, C2 and C3 are (1, 2, 3) */
    
    
    static const unsigned idx[4][4] = {
      { 0, 1, 2, 3 },
      { 1, 2, 3, 0 },
      { 2, 3, 0, 1 },
      { 3, 0, 1, 2 } };
    
    #if 0
    static const unsigned idx4[4][4] = {
      { 0, 4, 8, 12 }, 
      { 4, 8, 12, 0 }, 
      { 8, 12, 0, 4 }, 
      { 12, 0, 4, 8 } };
    #endif
    
    static const unsigned iidx[4][4] = {
      { 0, 1, 2, 3 },
      { 3, 0, 1, 2 },
      { 2, 3, 0, 1 },
      { 1, 2, 3, 0 } };
    
    void
    aes_encrypt(struct aes_ctx *ctx,
    	    unsigned length, uint8_t *dst,
    	    const uint8_t *src)
    {
    
      FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
    
        {
          uint32_t wtxt[4];		/* working ciphertext */
          unsigned i;
          unsigned round;
          
          /* Get clear text, using little-endian byte order.
           * Also XOR with the first subkey. */
    
          for (i = 0; i<4; i++)
    	wtxt[i] = LE_READ_UINT32(src + 4*i) ^ ctx->keys[i];
    
    
          for (round = 1; round < ctx->nrounds; round++)
    	{
    	  uint32_t t[4];
    	  unsigned j;
    
    	  /* What's the best way to order this loop? Ideally,
    	   * we'd want to keep both t and wtxt in registers. */
    
    
    	    {
    #if AES_SMALL
    	      t[j] =         dtable[0][ B0(wtxt[j]) ] ^
    		ROTRBYTE(    dtable[0][ B1(wtxt[idx[1][j]]) ]^
    		  ROTRBYTE(  dtable[0][ B2(wtxt[idx[2][j]]) ] ^
    		    ROTRBYTE(dtable[0][ B3(wtxt[idx[3][j]]) ])));
    
    	      t[j] = (  dtable[0][ B0(wtxt[idx[0][j]]) ]
    		      ^ dtable[1][ B1(wtxt[idx[1][j]]) ]
    		      ^ dtable[2][ B2(wtxt[idx[2][j]]) ]
    		      ^ dtable[3][ B3(wtxt[idx[3][j]]) ]);
    
    	  for (j = 0; j<4; j++)
    	    wtxt[j] = t[j] ^ ctx->keys[4*round + j];
    	}
          /* Final round */
          {
    
    	unsigned j;
    	for (j = 0; j<4; j++)
    	  {
    	    /* FIXME: Figure out how the indexing should really be done.
    	     * It looks like this code shifts the rows in the wrong
    	     * direction, but it passes the testsuite. */
    
    	    cipher = (   (uint32_t) sbox[ B0(wtxt[j]) ]
    			 | ((uint32_t) sbox[ B1(wtxt[idx[1][j]]) ] << 8)
    			 | ((uint32_t) sbox[ B2(wtxt[idx[2][j]]) ] << 16)
    			 | ((uint32_t) sbox[ B3(wtxt[idx[3][j]]) ] << 24));
    
    	    fprintf(stderr, "  t[%d]: %x, key: %x\n",
    		    j, cipher, ctx->keys[4*round + j]);
    
    	    cipher ^= ctx->keys[4*round + j];
    
    	    LE_WRITE_UINT32(dst + 4*j, cipher);
    	  }
    
    
    void
    aes_decrypt(struct aes_ctx *ctx,
    	    unsigned length, uint8_t *dst,
    	    const uint8_t *src)
    {
    #if DEBUG
      {
        unsigned i, j;
        fprintf(stderr, "subkeys:\n");
        for (j = 0; j<=ctx->nrounds; j++)
          {
    	printf(" %d: ", j);
    	for (i = 0; i<4; i++)
    	  printf("%08x, ", ctx->ikeys[i + 4*j]);
    	printf("\n");
          }
      }
    #endif
      FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
        {
          uint32_t wtxt[4];		/* working ciphertext */
          unsigned i;
          unsigned round;
    
          /* Get cipher text, using little-endian byte order.
           * Also XOR with the first subkey. */
          for (i = 0; i<4; i++)
    	wtxt[i] = LE_READ_UINT32(src + 4*i) ^ ctx->ikeys[i];
    
          for (round = 1; round < ctx->nrounds; round++)
    	{
    	  uint32_t t[4];
    	  unsigned j;
    
    #if DEBUG
    	  fprintf(stderr, "decrypt, round: %d\n  wtxt: ", round);
    	  for (j = 0; j<4; j++)
    	    fprintf(stderr, "%08x, ", wtxt[j]);
    	  fprintf(stderr, "\n  key: ");
    	  for (j = 0; j<4; j++)
    	    fprintf(stderr, "%08x, ", ctx->ikeys[4*round + j]);
    	  fprintf(stderr, "\n");
    #endif
    	  /* The row shift counts C1, C2 and C3 are (1, 2, 3) */
    	  /* What's the best way to order this loop? Ideally,
    	   * we'd want to keep both t and wtxt in registers. */
    
    	  for (j=0; j<4; j++)
    
    	    {
    #if AES_SMALL
    	      t[j] =         itable[0][ B0(wtxt[j]) ] ^
    		ROTRBYTE(    itable[0][ B1(wtxt[iidx[1][j]]) ]^
    		  ROTRBYTE(  itable[0][ B2(wtxt[iidx[2][j]]) ] ^
    		    ROTRBYTE(itable[0][ B3(wtxt[iidx[3][j]]) ])));
    
    #else /* !AES_SMALL */
    
    	      /* FIXME: Figure out how the indexing should really be done.
    	       * It looks like this code shifts the rows in the wrong
    	       * direction, but it passes the testsuite. */
    	      for (j=0; j<4; j++)
    		t[j] = (  itable[0][ B0(wtxt[iidx[0][j]]) ]
    			^ itable[1][ B1(wtxt[iidx[1][j]]) ]
    			^ itable[2][ B2(wtxt[iidx[2][j]]) ]
    			^ itable[3][ B3(wtxt[iidx[3][j]]) ]);
    
    #endif /* !AES_SMALL */
    
    #if DEBUG
    	  fprintf(stderr, "  t: ");
    	  for (j = 0; j<4; j++)
    	    fprintf(stderr, "%08x, ", t[j]);
    	  fprintf(stderr, "\n");
    #endif
    	  for (j = 0; j<4; j++)
    	    wtxt[j] = t[j] ^ ctx->ikeys[4*round + j];
    	}
          /* Final round */
          {
    	uint32_t clear;
    
    	unsigned j;
    	for (j = 0; j<4; j++)
    	  {
    	    /* FIXME: Figure out how the indexing should really be done.
    	     * It looks like this code shifts the rows in the wrong
    	     * direction, but it passes the testsuite. */
    
    	    clear = (   (uint32_t) isbox[ B0(wtxt[j]) ]
    			| ((uint32_t) isbox[ B1(wtxt[iidx[1][j]]) ] << 8)
    			| ((uint32_t) isbox[ B2(wtxt[iidx[2][j]]) ] << 16)
    			| ((uint32_t) isbox[ B3(wtxt[iidx[3][j]]) ] << 24));
    
    	    fprintf(stderr, "  t[%d]: %x, key: %x\n",
    		    j, clear, ctx->ikeys[4*round + j]);
    
    	    clear ^= ctx->ikeys[4*round + j];
    
    	    LE_WRITE_UINT32(dst + 4*j, clear);
    	  }